Cho a/b = b/c = c/d (b,c,d # 0). Chung minh rang
a^3 + b^3 + c^3/ b^3+ c^3 + d^3 =a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}.\)
\(\Rightarrow\hept{\begin{cases}3a=b+c+d\\3b=a+c+d\end{cases};\hept{\begin{cases}3c=a+b+d\\3d=a+b+c\end{cases}}}\)
Trừ vế theo vế ta có :\(\hept{\begin{cases}3\left(a-b\right)=b-a\\3\left(b-c\right)=c-b\\3\left(c-d\right)=d-c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-b=b-a=0\\b-c=c-b=0\\c-d=d-c=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}}\)=>a=b=c=d
\(\Rightarrow M=1+1+1+1=4\)
Giải : Ta có: \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{b+c+a}\)
=> \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{b+c+a}{d}\)
=> \(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{b+c+a}{d}+1\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\) => a = b = c = d
Khi đó, ta có: M = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
= \(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)
= \(1+1+1+1=4\)
A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)
\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)
suy ra đpcm.
\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)
suy ra đpcm.
B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)
\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)
suy ra đpcm.
áp dụng tính chất dãy tỉ số bằng nhau ta có a/(b+c+d)=b/(c+d+a)=c/(a+b+d)=d/(a+b+c)=(a+b+c+d)/(b+c+d+c+d+a+a+b+d+a+b+c)
=(a+b+c+d)/(3a+3b+3c+3d)=1/3
vì a+b+c+d khác 0 nên a=b=c=d
từ đó =>A=(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)=1+1+1+1=4
Cộng thêm 1 vào mỗi đẳng thức, ta được :
\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Vì các tử số của mỗi tỉ số bằng nhau suy ra các mẫu số của mỗi tỉ số bằng nhau
\(\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow a=b=c=d\)
\(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{a+d}{a+b}+\frac{d+a}{c+d}\)
\(A=1+1+1+1=4\)
Bài này dễ mà các bạn