tìm x thuộc N để giá trị biểu thức x^2+3x+1 là số chính
phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=2-\frac{5}{3x+2}\)là số nguyên \(\Leftrightarrow\frac{5}{3x+2}\)nguyên mà \(x\)nguyên nên
\(3x+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{-1,1\right\}\)(vì \(x\)nguyên)
Thử lại thấy \(x=1\)thỏa mãn \(M=5x+11\)là số chính phương.
Vậy giá trị của \(x\)thỏa mãn là \(1\).
câu 1 lười quá :v
câu 2là hằng đẳng thức đó bạn. = (x^2-3x+5-x^2+3x+1)2 = 62 = 36
câu 3 : = (n^2+3n)(n^2+3n+2)+(2n)^2
đặt ẩn phụ rồi tách tiếp
chúc bạn học tốt
Đặt \(x^2+2x+20=a^2\left(a\ge0\right)\)
\(\Leftrightarrow x^2+2x+1+19=a^2\)
\(\Leftrightarrow\left(x+1\right)^2+19=a^2\)
\(\Leftrightarrow a^2-\left(x+1\right)^2=19\)
\(\Leftrightarrow\left(a+x+1\right)\left(a-x-1\right)=19=19.1\)
Vì \(a\ge0;x\ge0\)nên\(\left(a+x+1\right)\ge\left(a-x-1\right)\)
Suy ra:\(\hept{\begin{cases}a+x+1=19\\a-x-1=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+x=18\\a-x=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=10\\x=8\end{cases}}\)(Phần này mình làm nhanh)
Vậy khi x=8 thì \(x^2+2x+20\)là số chính phương
Trả lời:
a, \(ĐK:x\ne\frac{1}{3}\)
\(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)
\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)
b, \(5x^2+3x=0\)
\(\Leftrightarrow x\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)
Thay x = 0 vào A, ta có :
\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)
Thay x = - 3/5 vào A, ta có :
\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)
c, \(A=\frac{x}{x-1}\)
\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)
\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)
\(\Rightarrow x-1=3x^2-x\)
\(\Leftrightarrow3x^2-x-x+1=0\)
\(\Leftrightarrow3x^2-2x+1=0\)
\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)
\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)
Vậy không tìm được x thỏa mãn đề bài.
d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)
Vậy x thuộc Z thì 6/A thuộc Z
\(A=\left(3x+1-\frac{1}{1-3x}\right):\left(\frac{3x-9x^2}{3x-1}\right)=\left(\frac{1-9x^2-1}{1-3x}\right):\left(\frac{3x\left(1-3x\right)}{3x-1}\right)=-\frac{9x}{1-3x}:\left(-3x\right)=\frac{3}{1-3x}\)
b. Với \(5x^2+3x=0\Leftrightarrow x\left(5x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\) nhưng mà ở trên ta cần có điều kiện x#0 nên
\(x=-\frac{3}{5}\Rightarrow A=\frac{3}{1-3\times\left(-\frac{3}{5}\right)}=\frac{15}{14}\)
c.\(A=\frac{x}{x-1}=\frac{3}{1-3x}\Leftrightarrow x-3x^2=3x-3\Leftrightarrow3x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{10}}{3}\)
d.\(\frac{6}{A}=2\times\left(1-3x\right)\) nguyên nên \(1-3x=-\frac{k}{2}\Leftrightarrow x=\frac{k+2}{6}\) với k là số nguyên
Do \(x^2+3x+1\) là số chính phương nên \(x^2+3x+1=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4x^2+12x+4=4a^2\)
\(\Leftrightarrow\left[\left(2x\right)^2+2.2x.3+3^2\right]-4a^2-5=0\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2a\right)^2=5\)
\(\Leftrightarrow\left(2x-2a+3\right)\left(2x+2a+3\right)=5\)
Do x;a nguyên nên \(2x-2a+3\) và \(2x+2a+3\) là ước của 5
\(Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
Với \(2x-2a+3=1\) thì \(2x+2a+3=5\) => \(\left(a;x\right)=\left(1;0\right)\) (TM)
Với \(2x-2a+3=5\) thì \(2x+2a+3=1\) => \(\left(a;x\right)=\left(-1;0\right)\) (TM)
Với \(2x-2a+3=-1\) thì \(2x+2a+3=-5\) => \(\left(a;x\right)=\left(-1;-3\right)\) (loại)
Với \(2x-2a+3=-5\) thì \(2x+2a+3=-1\) => \(\left(a;x\right)=\left(-3;-1\right)\) (loại)
Vậy \(x=0\)