\(GPT:\sqrt{2009-x}+\sqrt{2035-x}+\sqrt{2154-x}=24\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) cách khác:
\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)
\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)
\(\Leftrightarrow x=1\)
Đề sai. Sửa đề \(\sqrt{2059-x}+\sqrt{2035-x}+\sqrt{2154-x}=24\) (1)
Điều kiện: \(x\le2035\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{2059-x}-7\right)+\left(\sqrt{2035-x}-5\right)+\left(\sqrt{2154-x}-12\right)=0\)
\(\Leftrightarrow\frac{2010-x}{\sqrt{2059-x}+7}+\frac{2010-x}{\sqrt{2035-x}+5}+\frac{2010-x}{\sqrt{2154-x}+12}=0\)
\(\Leftrightarrow\left(2010-x\right)\left(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}\right)=0\)
Ta thấy biếu thức \(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}\)luôn dương nên \(2010-x=0\Leftrightarrow x=2010\)(TM)
Vậy ...
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{x-2}=\sqrt{(x-2).1}\leq \frac{x-2+1}{2}\)
\(\sqrt{y+2009}=\sqrt{(y+2009).1}\leq \frac{y+2009+1}{2}\)
\(\sqrt{z-2010}=\sqrt{(z-2010).1}\leq \frac{z-2010+1}{2}\)
Cộng theo vế suy ra :
\(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}\leq \frac{x+y+z}{2}\)
Dấu bằng xảy ra khi \(x-2=y+2009=z-2010=1\Leftrightarrow \left\{\begin{matrix} x=3\\ y=-2008\\ z=2011\end{matrix}\right.\)
Đặt a = \(\sqrt{12-x}\), b = \(\sqrt[3]{24+x}\), ta có:
a + b = 6 => a = 6 - b , (a+b)2 = 36 (1)
Có a2 + b3 = 12 - x + 24 + x = 36 (2)
(1), (2) suy ra (a+b)2 = a2 + b3
<=> a2 + 2ab + b2 = a2 + b3
<=> 2ab + b2 = b3
<=> b3 - b2 - 2ab = 0
<=> b(b2 - b - 2a)=0
Thay a = 6 - b , pt trở thành:
b(b2 - b - 2*6 + 2b) = 0
<=> b(b2 + b - 12) = 0
<=> b(b2 + 4b - 3b -12) = 0
<=> b(b - 3)(b + 4) = 0
<=> b = 0 => x = -24
b = 3 => x = 3
b = -4 => x = -88
Vậy S = {-88;-24;3}
ĐK: \(12-x\ge0\Rightarrow x\le12\)
đặt
\(\hept{\begin{cases}u=\sqrt{12-x}\\v=\sqrt[3]{24+x}\end{cases}}=>\hept{\begin{cases}u^2=12-x\\v^3=24+x\end{cases}}=>\hept{\begin{cases}u^2+v^3=36\left(1\right)\\u+v=6\left(2\right)\end{cases}}\)
từ (2) ta có: \(u=6-v\) thay vào (1) được: \(\left(6-v\right)^2+v^3=36\Leftrightarrow v^3+v^2-12v=0\)
\(\Leftrightarrow v\left(v^2+v-12\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}v=0\\v^2+v-12=0\end{cases}}\Leftrightarrow v=0;v=3;v=-4\)
với \(v=0\Rightarrow u=6\Rightarrow12-x=36\Rightarrow x=-24\)(TM)
với \(v=3\Rightarrow u=3\Rightarrow x=3\left(TM\right)\)
với \(v=-4\Rightarrow u=10\Rightarrow x=-88\left(TM\right)\)
vậy tập nghiệm của PT là S={-24,3,-88}