* Tìm GTNN của \(\sqrt{x^2-2x+5}\)
* Tìm GTLN của \(5-\sqrt{x^2-6x+14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toan violympic lop 9 la GTNN
\(B=\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)
\(=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2+9}+\sqrt{\left(x+1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)
tick nha
\(B=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2+3^2}+\sqrt{\left(x+2\right)^2+2^2}\ge\sqrt{\left(3-x+x+2\right)^2+\left(3+2\right)^2}=5\sqrt{2}\)
Bmin = \(5\sqrt{2}\) khi x=0 ; y =-1
B min nhé
\(A=5-\sqrt{x^2-6x+14}\)
\(=5-\sqrt{\left(x^2-6x+9\right)+5}\)
\(=5-\sqrt{\left(x-3\right)^2+5}\le5-\sqrt{5}\)
Dấu "=" <=> x-3=0
<=> x=3
Vậy ....
Câu 2:
\(C=-x+\sqrt{x}\)
\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
\(\sqrt{\left(x-1\right)^2+4}\ge2\)
\(\sqrt{x^2-2x+5}\ge2\)