K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

a, Sử dụng tính chất phân giác trong và phân giác ngoài tại 1 điểm ta có:

I B K ^ = I C K ^ = 90 0

=> B, C, I, K ∈ đường tròn tâm O đường kính IK

b, Chứng minh  I C A ^ = O C K ^  từ đó chứng minh được  O C A ^ = 90 0

Vậy AC là tiếp tuyến của (O)

c, Áp dụng Pytago vào tam giác vuông HAC  => AH=16cm. Sử dụng hệ thức lượng trong tam giác vuông COA => OH=9cm,OC=15cm

1 tháng 4 2021

a)     CMR: 4 điểm B, I, C, K cùng thuộc (O).

Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên ∠ICK=90

Chứng minh hoàn toàn tương tự ta có: ∠IBK=90

Xét tứ giác BICK ta có: ∠IBK+∠ICK=90+90=180

⇒BICK  là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng 180)

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC.

b)     CMR: AC là tiếp tuyến của (O).

Ta có : Tam giác IOC cân tại O nên : ∠OIC=∠OCI.

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

∠OIC=∠IAC+∠ACI=1/2∠BAC+1/2∠ACB=1/2∠BAC+1/2∠ABC

⇒∠ICO+∠ICA=1/2∠BAC+1/2∠ABC+1/2∠ACB=12.180=90 ⇒OC⊥CA.

Do đó AC là tiếp tuyến của (O) tại C (đpcm).

c)     Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.

Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là S’, gọi giao điểm BC và IK là M.

Ta có ngay :

S = S′−S (ICKB) =π.IO2−S (IBK)−S (IKC)

= π.IK2/4 −(BM.IK)/2−(CM.IK)/2

=πIK2/4 − (BC.IK)/2

Ta có :

     S (ABC) = 1/2 (AM.BC) = (AB+BC+CA) /2 .IM

⇔√(AB2−BM2 ) .24 = (AB+BC+CA).IM

⇔√[202−(24/2)2 ]. 24= (20.2+24).IM⇔IM=6.     

Áp dụng hệ thức lượng trong tam giác IBM vuông tại B  có đường cao BM ta có :

BM2=IM.MK ⇔MK=BM2/IM=122/6=24

⇒IM=IM+MK=6+24=30.

⇒S= 1/4(π.IK2)−1/2 BC.IK =1/4 π.30−1/2(24.30 )  =225π−360 ≈346,86  (dvdt)

 

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
23 tháng 3 2017

ko biết

24 tháng 3 2017

Đường tròn c: Đường tròn qua A, B, C Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [A, I] Đoạn thẳng l: Đoạn thẳng [B, K] Đoạn thẳng m: Đoạn thẳng [H, C] Đoạn thẳng n: Đoạn thẳng [K, C] Đoạn thẳng p: Đoạn thẳng [I, C] Đoạn thẳng q: Đoạn thẳng [K, I] Đoạn thẳng r: Đoạn thẳng [A, K] Đoạn thẳng t: Đoạn thẳng [B, F] Đoạn thẳng a: Đoạn thẳng [H, F] A = (-6.94, 5.84) A = (-6.94, 5.84) A = (-6.94, 5.84) B = (-8.06, 1.8) B = (-8.06, 1.8) B = (-8.06, 1.8) C = (-1.34, 1.82) C = (-1.34, 1.82) C = (-1.34, 1.82) Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm K: Giao điểm của c, j Điểm K: Giao điểm của c, j Điểm K: Giao điểm của c, j Điểm I: Giao điểm của c, i Điểm I: Giao điểm của c, i Điểm I: Giao điểm của c, i Điểm J: Trung điểm của m Điểm J: Trung điểm của m Điểm J: Trung điểm của m Điểm O: Tâm của c Điểm O: Tâm của c Điểm O: Tâm của c Điểm F: Giao điểm của c, s Điểm F: Giao điểm của c, s Điểm F: Giao điểm của c, s Điểm P: Trung điểm của A, C Điểm P: Trung điểm của A, C Điểm P: Trung điểm của A, C

a. Ta thấy \(\widehat{HDC}=\widehat{HEC}=90^o\) nên CDHE là tứ giác nội tiếp đường tròn đường kính HC.

b. Ta thấy ngay \(\widehat{IAC}=\widehat{KBC}\) (Cùng phụ với góc ACB) nên \(\widebat{IC}=\widebat{KC}\) (Góc nội tiếp)

suy ra IC = KC ( Liên hệ giữa cung và dây)

Vậy nên tam giác IKC cân tại C.

c. Do \(\widebat{IC}=\widebat{KC}\) nên \(\widehat{KAC}=\widehat{ACI}\) (Góc nội tiếp)

Xét tam giác AHK có AE vừa là đường cao, vừa là phân giác nên AHK là tam giác cân tại A, hay AH = AK.

d. Ta thấy do BOF là đường kính nên \(\widehat{BCF}=90^o\Rightarrow\) AH // FC (Cùng vuông góc với BC).

Tương tự AF // HC vì cùng vuông góc với AB. Vậy thì AFCH là hình bình hành hay AC giao FH tại trung điểm mỗi đường.

P là trung điểm AC nên F cũng là trung điểm FH. Vậy F, H, P thẳng hàng.

25 tháng 7 2019

+ Vì O là giao điểm của ba đường phân giác trong tam giác ABC nên O là tâm của đường tròn nội tiếp tam giác ABC nên đáp án A sai.

+ Tam giác ABC vuông tại A có F là trung điểm của BC nên AF là đường trung tuyến ứng với cạnh huyền 

Do đó: AF =  1 2 BC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Suy ra AF = FC = FB 

Nên F cách đều ba đỉnh A, B, C 

Do đó F là tâm đường tròn ngoại tiếp tam giác ABC.

+ Vì D  ≠ E  ≠ F và chỉ có một đường tròn ngoại tiếp tam giác ABC nên đáp án B, C sai và D đúng.

Chọn đáp án D

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0