K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2.\frac{c+b-a}{abc}\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)    (vì: a=b+c)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)

Do a,b,c là các số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\) là 1 số hữu tỉ

=.= hok tốt!!

27 tháng 6 2016

Ta có: 

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\frac{c+b-a}{abc}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(vì a = b + c)

Suy ra: 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Do a, b, c là các số hữu tỉ khác 0 nên \(\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)là một số hữu tỉ.

(Chúc bạn làm bài tốt và nhớ click cho mình với nhá!)

27 tháng 6 2016

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) có \(a=b+c\Rightarrow A=\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2c^2+c^2\left(b+c\right)^2+b^2\left(b+c\right)^2}{\left(b+c\right)^2b^2c^2}\)
Ta có \(b^2c^2+c^2\left(b+c\right)^2+b^2\left(b+c\right)^2=b^2c^2+\left(b+c\right)^2\left(b^2+c^2\right)\)
        =\(b^2c^2+\left(b^2+c^2+2bc\right)\left(b^2+c^2\right)=b^2c^2+\left(b^2+c^2\right)^2+2bc\left(b^2+c^2\right)\)
        =\(\left(bc+\left(b^2+c^2\right)\right)^2\)
Vậy \(A=\frac{\left(bc+\left(b^2+c^2\right)\right)^2}{\left(b+c\right)^2b^2c^2}\Rightarrow\sqrt{A}=\frac{bc+b^2+c^2}{\left|\left(b+c\right)bc\right|}\)
Do \(b,c\)là các số chính phương nên \(\sqrt{A}\)chính phương suy ra điều phải chứng minh.

14 tháng 5 2018

cm cái gì?

NV
25 tháng 8 2021

Hằng đẳng thức:

\(\left(x-y-z\right)^2=x^2+y^2+z^2+2\left(yz-xy-zx\right)=x^2+y^2+z^2-2\left(xy+xz-yz\right)\)

\(\Rightarrow x^2+y^2+z^2=\left(x-y-z\right)^2+2\left(xy+xz-yz\right)\)

Giờ thay \(x=\dfrac{1}{a}\) ; \(y=\dfrac{1}{b}\)\(z=\dfrac{1}{c}\) là ra cái người ta làm

25 tháng 8 2021

Anh ơi! đoạn cuối do a,b,c là các số hữu tỉ khác 0 nên \(\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) là các số hữu tỉ. Vậy phá trị tuyệt đói ra thì nó có phải là số hữu tỉ nữa không ạ anh. anh giải thích giúp em nhá! 

23 tháng 6 2019

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\left(\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{bc}}=\sqrt{\frac{1}{a^2}+\left(\frac{b+c}{bc}\right)^2-\frac{2}{bc}.}\)

\(=\sqrt{\frac{1}{a^2}+\frac{a^2}{b^2c^2}-\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}-\frac{a}{bc}\right)^2}\)\(=\left|\frac{1}{a}-\frac{a}{bc}\right|\)

Do a,b,c là các số hữu tỉ => đpcm

23 tháng 6 2019

Ta có 

\(\frac{1}{a^2\:}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b\:}-\frac{1}{c}\right)^2\)2.    + \(2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)\(2.\frac{c+b-a}{abc}\)\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(Vì a=b+c)

Từ đó suy ra 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\)\(=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)Vì a,b,c là số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ

=> đpcm

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:
Bạn chú ý lần sau gõ đề bài bằng công thức toán. Việc gõ đề thiếu/ sai/ không đúng công thức khiến người sửa rất mệt.

a) Theo hằng đẳng thức đáng nhớ:

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)}\)

\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2(a+b+c)}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-0}\) (do $a+b+c=0$)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

b) Theo điều kiện đề bài:

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2}{b^2c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2+2bc}{b^2c^2}-\frac{2}{bc}}\)

\(=\sqrt{\frac{1}{(b+c)^2}+(\frac{b+c}{bc})^2-\frac{2}{bc}}=\sqrt{(\frac{1}{b+c}-\frac{b+c}{bc})^2}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\)

\(a,b,c\in\mathbb{Q}\Rightarrow \)\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\in\mathbb{Q}\)

Ta có đpcm.