Chứng tỏ với mọi n thuộc N ta có
(n+2017^2018).(n+2018^2017) chia hết cho 2
Bn nào giải đc giúp mk na! Thanks bn đó nhìu!!!!>_<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n là số lẻ thì n + 20172018 là số chẵn
Suy ra .............
Với n là số chẵn thì n + 20182017 là số chẵn
Suy ra ............
Vậy ..............
:3 Số 'm' phải là số lẻ nhé cậu
Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)
Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)
Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)
Do m lẻ nên \(S⋮2018=1009.2⋮1009\)
Vậy \(S⋮1009\)
Mặt khác ta lại có
\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\) \(⋮2017\)
=> \(S⋮2017\)
Mà (1009,2017) = 1
=> \(S⋮2017.1009=......\)
Đặt biểu thức là A
+, Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2
+, Nếu n lẻ
(mà 2018 là số lẻ) => n + 2017 là số chẵn => A chia hết cho 2
Với mọi n thuộc N thì A chia hết cho 2
Vì n+2017;n+2018 là hai số nguyên liên tiếp
nên \(\left(n+2017\right)\left(n+2018\right)⋮2\)
Đơn giản mà.
Đặt biểu thức trên là A
+ Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2
+ Nếu n lẻ (mà 20172018 là số lẻ) => n + 20172018 là số chẵn => A chia hết cho 2
Vậy với mọi n thuộc N thì A chia hết cho 2
Ta có : a không chia hết cho 2 nên a lẻ
Do đó: a^2 _ lẻ
Tương tự:b^2_lẻ
Do đó: a^2+b^2_Chẵn (vì lẻ +lẻ = chẵn)
Nên : a^2+b^2__Chẵn