K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(A=7+7^3+...+7^{1995}\)

\(\Rightarrow A=\left(7+7^3\right)+...+\left(7^{1993}+7^{1995}\right)\)

\(\Rightarrow A=\left(7+7^3\right)+...+7^{1992}.\left(7+7^3\right)\)

\(\Rightarrow A=350+...+7^{1992}.350\)

\(\Rightarrow A=350.\left(1+...+7^{1992}\right)\)

\(\Rightarrow A=35.10.\left(1+...+7^{1992}\right)⋮35\left(đpcm\right)\)

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ

 

22 tháng 11 2017
Ta có: A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2) A=7×50+7^5×50+...7^1997×50 A=350+7^4×350+...7^1996×350 A=35×10+7^4×35×10+...+7^1996×35×10 A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35
22 tháng 11 2017

Ta có:

A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2)

A=7×50+7^5×50+...7^1997×50

A=350+7^4×350+...7^1996×350

A=35×10+7^4×35×10+...+7^1996×35×10

A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35

Bài 1: 

a: \(=5^2\left(5^3-5^2+1\right)=5^2\cdot101⋮101\)

b: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)

15 tháng 10 2017

\(A=7^2+7^3+...+7^8.\)

\(\Rightarrow A=\left(7^2+7^3\right)+....+\left(7^7+7^8\right)\)

\(\Rightarrow A=7^2.8+....+7^7.8\)

\(\Rightarrow A=8.\left(7^2+....+7^7\right)\)

Do đó A là số chẵn ( vì mọi số nhân với 8 đều là số chẵn )

5 tháng 11 2017

6725572

12 tháng 10 2019

Đề là như thế này à bạn \(5^{7^n}+7^{5^n}⋮12\) ? jugrh

12 tháng 10 2019

đúng rồi

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

29 tháng 9 2017


76 - 75 - 74 \(⋮\)77
76 - 75 - 74 \(⋮\)7 . 11
Do có lũy thừa của 7 nên ta chỉ cần CM chia hết cho 11
 

29 tháng 9 2017

toán lớp 6 chứ không phải toán lớp 3 đâu.

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

15 tháng 9 2017

1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên