CMR : Số A = ( 7 + 7 mũ 3 + 7 mũ 5 + ..... + 7 mũ 1995 ) chia hết cho 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
Ta có:
A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2)
A=7×50+7^5×50+...7^1997×50
A=350+7^4×350+...7^1996×350
A=35×10+7^4×35×10+...+7^1996×35×10
A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35
Bài 1:
a: \(=5^2\left(5^3-5^2+1\right)=5^2\cdot101⋮101\)
b: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)
\(A=7^2+7^3+...+7^8.\)
\(\Rightarrow A=\left(7^2+7^3\right)+....+\left(7^7+7^8\right)\)
\(\Rightarrow A=7^2.8+....+7^7.8\)
\(\Rightarrow A=8.\left(7^2+....+7^7\right)\)
Do đó A là số chẵn ( vì mọi số nhân với 8 đều là số chẵn )
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
76 - 75 - 74 \(⋮\)77
76 - 75 - 74 \(⋮\)7 . 11
Do có lũy thừa của 7 nên ta chỉ cần CM chia hết cho 11
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
\(A=7+7^3+...+7^{1995}\)
\(\Rightarrow A=\left(7+7^3\right)+...+\left(7^{1993}+7^{1995}\right)\)
\(\Rightarrow A=\left(7+7^3\right)+...+7^{1992}.\left(7+7^3\right)\)
\(\Rightarrow A=350+...+7^{1992}.350\)
\(\Rightarrow A=350.\left(1+...+7^{1992}\right)\)
\(\Rightarrow A=35.10.\left(1+...+7^{1992}\right)⋮35\left(đpcm\right)\)