K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

ta có : A = x^4 +2x^3+3x^2+ax+b
= x^2(x^2+2x+1) + 2x(x+1) +1+x(a-2) +(b-1)
= x^2(x+1)^2 + 2x(x+1) +1+ x(a-2)+(b-1)
= [ x(x+1) +1]^2 +x(a-2) +(b-1)
đề biểu thức A là một số chính phương thì (a-2) = 0 và ( b-1) = 0
=> a=2 và b=1

15 tháng 10 2017

copy nhầm 

23 tháng 5 2017

Ta có:\(A=x^4-2x^3-x^2+ax+b\)

          \(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)

                   Để A là đa thức thì x - a = x -2

                            Do đó a=2;b=0

26 tháng 2 2018

Ta có:A=x4−2x3−x2+ax+b

          A=x3(x−2)−x(x−a)+b

                   Để A là đa thức thì x - a = x -2

                            Do đó a=2;b=0

12 tháng 9 2019

A là đa thức có hệ số cao nhất là 1

=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)

Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)

=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)

Cân bằng hệ số hai vế ta có:

\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)

<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)

Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)

10 tháng 4 2021

P(x) = x4 - 2x3 + 3x2 + ax + b

P(x) là bình phương của một đa thức => P(x) = ( x2 + cx + d )2

=> x4 - 2x3 + 3x2 + ax + b = ( x2 + cx + d )2

<=> x4 - 2x3 + 3x2 + ax + b = x4 + 2cx3 + ( 2d + c)x2 + 2cdx+ d2

( thực ra lớp 8 mới học HĐT nhưng để làm được bất đắc dĩ mình mới dùng :D )

Đồng nhất hệ số ta có : \(\hept{\begin{cases}2c=-2\\2d+c^2=3\\2cd=a\end{cases};b=d^2}\)=> \(\hept{\begin{cases}a=-2\\b=d=1\\c=-1\end{cases}}\)

Vậy ... 

10 tháng 4 2021

Quỳnh Legendd cho mình hỏi chút là C và d ở đâu vậy?

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4