Chứng minh rằng (11.12.13+114.115.116+1117.1118.1119) chia hết cho 3
Bài 2 chứng minh rằng:
a) S=7^2 +7^3+7^4+...+7^60
Schia hết cho 8
b)A=a+a^2+a^3+a^4+...+4^24
A chia hết cho a+1 (a C N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
Lẹ đi mọi người mik đang cần gấp!
1/ ta có :
11.12.13+ 114.115.116+ 1117.1118.1119= 11.3.4.13+ 3.38.115.116+ 1117.1118.3.373
= 3(11.4.13+ 38.115.116+ 1117.1118.373 ) chia hết cho 3 => đpcm
2/ a)(mik nghĩ là bn nhầm, nếu 7^2 +...+ 7^60 chia hết cho 8 thì chắc chắn là sai hoàn toàn, nên mik sửa đề) ta có :
S = \(7+7^2+7^3+7^4+7^5+...+7^{59}+7^{60}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{59}.7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=8\left(7+7^3+...+7^{59}\right)⋮8\)(đpcm)
b) \(A=a+a^2+a^3+a^4+...+a^{23}+a^{24}\)
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{23}+a^{24}\right)\)
\(=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{23}\left(1+a\right)\)
\(=\left(1+a\right)\left(a+a^3+...+a^{23}\right)⋮\left(a+1\right)\)(đpcm)
Nhớ kb với mik nha!