Tam giác ABC. E thuộc AC, D thuộc AB sao cho AD = 1/4 AB, AE = 1/2 AC, DE cắt BC tại E. Chứng minh rằng : CF = 1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠN TỰ VẼ HÌNH NHÉ
Lấy K trung điểm AB. Nối K với E, K với C. Như vậy D trung điểm AK
Ta có do KEKE là đường trung bình tam giác ABCABC nên KE//BCKE//BC và KE=12BCKE=12BC.
Lại có DEDE là đường trung bình tam giác AKCAKC nên DE//KCDE//KC.
Xét tam giác KEC và tam giác FCEcó
+ chung CE
+ ˆKEC=ˆFCE^ (so le trong do KE//BC)
+ ˆADE=ˆACK(đồng vị) mà ˆADE=ˆCEFnên ˆCEF=ˆACK
Như vậy △KEC=△FCE (g.c.g) nên CF=EK
Mà EK=1/2BCnên CF=1/2B
Ta có đpcm
Lấy H là trung điểm của BC, I là trung điểm của AB, G là trung điểm của EF
O là giao của EH và IC
trong tam giác ABC có IE là đường trung bình nênIE//BC=> IECH là hình bình hành->
EO=OH,IO=OC
trong tam giác ACI có DE là đường trung bình-> DE//IC -> OC//EF
Do OC//EF và EO=OH EG=GF=> OC đi qua trung điểm của HF => C là TĐ HF
=> CF=1/2BC (đpcm)
a) Xét ΔABD và ΔEBD có
BD là phân giác => góc ABD = góc EBD
BD chung
Góc BAD = góc BED =90o
=> ΔABD = ΔEBD (ch-gn)
=>AD=ED(2 cạnh tương ứng)
b) xét ΔADF và ΔEDC có
Góc DAF= góc DEC=90o
AD=ED (cmt)
Góc ADF=EDC( đối đỉnh)
=>ΔADF = ΔEDC (gcg)
=> AF=EC(2 cạnh tương ứng)
c) ta có ΔABD = ΔEBD (cmt)
=> AB = EB (2 cạnh tương ứng)
=> ΔBAE cân tại B
=> \(\widehat{BAE}=\widehat{BEA}=\)\(\dfrac{180 - \widehat{B}}{2}\)(1)
ta lại có AF=EC (cmt)
=> AB+AF=BE+EC
=> BF=BC
=> ΔBFC cân tại B
=>\(\widehat{BFC}=\widehat{BCF}=\dfrac{180-\widehat{B}}{2}\)(2)
từ (1) và (2) => \(\widehat{BFC}\)=\(\widehat{BAE}\) mà 2 góc ở vị trí đồng vị
=> AE//FC