Cho A = 11 mũ 9 + 11 mũ 8 + 11 mũ 7 + 11 mũ 6 + 11 mũ 5 + 11 mũ 4 + 11 mũ 3 + 11 mũ 2 + 11 + 1
Chứng tỏ rằng A chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
a)\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{9}\)
b)\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}=-\frac{1}{13}\)
c)\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=2\)
d(\(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(35+9\right)}=\frac{1}{6}\)
a)116+115=(..................1)+(..................1)=..........................2
Vì có chữ số tận cùng là 2 nên chia hết cho 4
Bài này thì chắc phải dùng đồng dư -_-
a) Ta có:
11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5 = -1 (mod 4) => 115 + 1 chia hết cho 4
=> 116 đồng dư với (-1)6 (mod 4)
=> 116 đồng dư với 1 (mod 4)
=> 116 - 1 chia hết cho 4
=> (116 - 1) + (115 + 1) chia hết cho 4
=> 116 + 115 chia hết cho 4
Mình giải ra rồi đó
Bạn xem đi
Đúng 100%
Vì mình thông minh nên mới giải được