Cho tam giác ABC. Goi O1, O2, O3 lần lượt là trung điểm của AB, BC, CA. M là điểm tùy ý không thuộc cánh nào trong tam giác ABC. Ve M1 đối xứng với M qua O1, M2 đối xứng với M1 qua O2, M3 đối xứng với M2 qua O3 . Chứng minh M3 đối xứng với M qua B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AKBM có hai đường chéo cắt nhau tại trung điểm mỗi đường (FK = FM, FA = FB) nên AKBM là hình bình hành.
Vậy thì AK song song và bằng BM.
Chứng minh tương tự thì BMCH cũng là hình bình hành, suy ra HC song song và bằng BM.
Từ đó ta có AK song song và bằng HC, hay AKHC là hình bình hành.
Vậy AH giao CK tại trung điểm mỗi đường. (1)
Chứng minh hoàn toàn tương tự:
IC song song và bằng AM, KB cũng song song và bằng AM nên IC song song và bằng KB.
Suy ra ICBK là hình bình hành hau BI giao CK tại trung điểm mỗi đường. (2)
Từ (1) và (2), ta có AH, BI, CK đồng quy tại điểm G là trung điểm mỗi đoạn trên.