Cho AB, AC là 2 tiếp tuyến của đường tròn (O) tại các tiếp điểm B, C. Gọi E, F lần lượt là trung điểm AB, AC. Lấy M(M khác E, F) bất kì trên È, vẽ các tiếp tuyến MP, MQ tới (O) với P, Q là tiếp điểm. CMR: M là tâm đường tròn ngoại tiếp tam giác APQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ thêm tiếp tuyến MH cắt OA tại R, gọi I là giao điểm của OA và BC., K là giao điểm EF và OA
tam giác MKI vuông tại K có: MI^2=IK^2+ KM^2 (1)
tam giác MOH vuông tại H có MH^2= OM^2- OH^2 = OK^2+KM^2- OH^2 ( tam giác OKM vuông tại K)
chứng minh OK^2-OH^2=OK^2-OB^2=OK^2 - OI.OA( tam giác OAB vuông tại B có BI là đường cao, OB = OH =R)
=(OI + IK)^2 - OI(OI+2IK)=OI^2 + 2OI.IK+IK^2-OI^2- 2OI.IK=IK^2 ( IA = 2IK)
suy ra MH^2= IK^2+ KM^2 (2)
từ (1) và (2) suy ra MH = MI mà MH = MT ( t/c 2 tt cắt nhau), MI = MA ( cm tam giác MAI cân tại M)
suy ra MT = MA
a) Từ O hạ OT vuông góc với MN tại T. Dễ thấy OE là trung trực AC nên OE vuông góc AC.
Mà AC // EM nên OE vuông góc EM. Từ đó ^OEM = ^OCM = ^OTM = 900, suy ra 5 điểm O,E,M,C,T cùng thuộc 1 đường tròn.
Tương tự, ta có 5 điểm O,F,B,N,T cùng thuộc 1 đường tròn. Do đó ^OTE = ^OCE = ^OAE = ^OBF = ^OTF.
Từ đó 3 điểm E,F,T thẳng hàng. Vậy thì ^OCT = ^ OEA = ^OEC = ^OTC.
Suy ra \(\Delta\)OCT cân tại O hay OT = OC. Khi đó MN tiếp xúc với (O) tại T. Theo tính chất 2 tiếp tuyến giao nhau:
BN = TN, CM = TM => BN + CM = MN (đpcm).
b) Gọi đường thẳng CR cắt (O) tại S. Ta sẽ chỉ ra S,B,Q thẳng hàng. Thật vậy:
Ta có: ^AQR + ^ACM = 1800 => ^AQR = 1800 - ^ACM = ^ABC = 1800 - ^ASR => Tứ giác ASRQ nội tiếp
=> ^RSQ = ^RAQ = 1800 - ^AQR - ^ARQ = 1800 - ^ABC - ^ACB = ^BAC = ^CSB.
Từ đó 3 điểm S,B,Q thẳng hàng (Vì SB trùng SQ). Vậy BQ và CR cắt nhau trên đường tròn (O) (đpcm).
Các bạn ơi, giúp mk vs, mai mk phải đi hc r mà ko có bài
Lấy M bất kì trên EF nhé các bạn