K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

các bạn ơi trả lời giúp mình đi

7 tháng 5 2018

Gọi \(ƯC\left(2a+3,4a+1\right)\)\(d\left(d\inℕ^∗\right).\)

\(\Rightarrow\hept{\begin{cases}2a+3⋮d\\4a+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}4a+6⋮d\\4a+1⋮d\end{cases}}}\)

\(\Rightarrow\left(4a+6\right)-\left(4a+1\right)⋮d\)

\(\Rightarrow5⋮d\)

\(\Rightarrow d\in\left\{1;5\right\}\)

Để \(\frac{2a+3}{4a+1}\)là PSTG thì d\(\ne5\)

\(\Rightarrow2a+3̸⋮5\)

\(\Rightarrow a\ne5k+1\left(k\in N\right)\)

Vậy với \(a\ne5k+1\left(k\inℕ\right)\)thì \(\frac{2a+3}{4a+1}\)là phân số tối giản.

5 tháng 3 2022

b, \(A=\dfrac{x+3+2}{x+3}=1+\dfrac{2}{x+3}\Rightarrow x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x+31-12-2
x-2-4-1-5

 

5 tháng 3 2022

Mình cảm ơn

5 tháng 3 2022

a, Để A là phân số thì \(x-3\ne0\Rightarrow x\ne3\)

b, Để A là phân số thì \(\dfrac{x-5}{x-3}\in Z\Rightarrow\dfrac{x-3-2}{x-3}\in Z\Rightarrow1-\dfrac{2}{x-3}\in Z\)

Vì \(1\in Z\Rightarrow\dfrac{2}{x-3}\in Z\Rightarrow2⋮\left(x-3\right)\Rightarrow x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Ta có bảng:

x-3-2-112
x1245

Vậy \(x\in\left\{1;2;4;5\right\}\)

 

6 tháng 3 2022

Mình cảm ơn nhiều ạ

11 tháng 7 2016

a) 3x + 7x = x .(3 + 7) = x . 10

Với x thuộc N thì 3x + 7x luôn có ước là 10 => 3x + 7x chia hết cho 10 => 3x + 7x chia hết cho 2 và 5 => 3x + 7x có ít nhất 3 ước là 1; 2; 5, không là số nguyên tố

Vậy không tìm được giá trị x thỏa mãn

b) 7x - 4x = 3x

+ Với x = 0 => 7x - 3x = 0 - 0 = 0, không là số nguyên tố, loại

+ Với x = 1 => 7x - 4x = 7 - 4 = 3, là số nguyên tố, chọn

+ Với x > 1 thì 7x - 4x sẽ có ít nhất 3 ước là 1 ; x; 3, không là số nguyên tố, loại

Vậy x = 1

Ủng hộ mk nha ^_-

25 tháng 1 2021

Ta có

  \(4a+1< 30\Leftrightarrow4a< 29\)

                               \(\Leftrightarrow a< 7,25\)

     Vì a là số nguyên tố => \(a\in\left\{2;3;5;7\right\}\)

Xét :

  • \(a=2\)

\(\Rightarrow4a+1=4.2+1=9\)(là hợp số)

\(\Rightarrow\)Loại

  • \(a=3\)

\(\Rightarrow4a+1=4.3+1=13\)(là số nguyên tố)

\(\Rightarrow\)Chọn

  • \(a>3\)

\(\Rightarrow\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}}\)\(\left(k\inℕ^∗\right)\)

Với \(a=3k+1\left(k\inℕ^∗\right)\)

\(\Rightarrow4a+1=4\left(3k+1\right)+1=12k+5< 30\)

\(\Rightarrow12k< 25\)

\(\Rightarrow k\le2\left(1\right)\)

Vì \(a>\text{3}\)và a nguyên tố 

\(\Rightarrow a>4\)

\(\Rightarrow3k+1>4\)

\(\Rightarrow3k>3\)

\(\Rightarrow k>1\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow k=2\)

\(\Rightarrow a=3.2+1=7\)

Thử lại : \(4a+1=4.7+1=29\)(là số nguyên tố)

\(\Rightarrow\)Thỏa mãn

Với \(a=3k+2\left(k\inℕ^∗\right)\)

\(\Rightarrow4a+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)

Vì \(a>3\)\(\Rightarrow4a+1>3\)

\(\Rightarrow4a+1\)là hợp số 

\(\Rightarrow\)Loại 

Vậy \(a\in\){\(3;7\)}

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ