Chứng tỏ rằng: Tổng:5+5*5+5*5*5*5+5*5*5*5+...+5*5*5*...*5 chia hết cho 6v( biết rằng tích cuối cùng có 2008 thừa số 5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) 5A = 5^2 + 5^3 +....+5^97
5A - A = 5^97-5
A = (5^95 - 5)/4
d) 4A + 5 = 5^n -3
5^97 = 5^n -3
Nhận xét : 5^97 chia hết cho 5
5^n - 3 không chia hết cho 5
Suy ra ko có sộ tự nhiên n thỏa mãn
a) A = 5(5+1) + 5^3(5+1)+...+5^95(5+1)
A = 5.6 +5^3 . 6 +....+ 5^95.6
A = 6 . ( 5+ 5^3 + 5^5+....+5^95)
Suy ra A chia hết cho 6
b) Xét 5^1 + 5^3 + 5^5+....+5^95
Có: (95-1)/2 + 1 = 48 số hạng
Mà 5^1 , 5^3, 5^5,...., 5^95 đều có chữ số tận cùng = 5
Suy ra 5^1 + 5^3 +....+5^95 có chữ số tận cùng = 0
Vậy A có chữ số tận cùng là 0
\(S=5+5^2+5^3+...+5^{2008}\)
a) Ta có: \(126=5^0+5^3\)
\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)
Áp dụng lần lượt như thế, ta có:
\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)
Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)
Trong khi đó: \(126=2\cdot3^2\cdot7\)
Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.
Từ đó suy ra S không chia hết cho 126.
b) Tất cả các số hạng đều có chữ số tận cùng là 5.
Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.
=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)
Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )
= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )
= 5.6 + 53.6 + .... + 599.6
= 6 ( 5 + 53 + ... + 599 )
Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6
Hay S chia hết cho 6 ( đpcm )
Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)
A=5.(1+5)+53.(1+5)+599.(1+5)
A=5.6+53.6+...+599.6
A=6.(5+53+...+599) sẽ chia hết cho 6
mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!
Đặt số dư là a
Ta có: 5k + a - 5g - a = 5(k-g) chia hết cho 5
Gọi 2 số đó là a và b
Do a và b có cùng số dư khi chia cho 5
=> a = 5.m + r; b = 5.n + r (r là số dư; r < m; r < n)
Ta có: a - b = (5.m + r) - (5.n + r)
= 5.m + r - 5.n - r
= 5.m - 5.n
= 5.(m - n) chia hết cho 5
Chứng tỏ 2 số chia cho 5 có cùng số dư thì hiệu của chúng chia hết cho 5