Cho đường tròn (O) đường kính AB, E ∈ AO (E khác A, O và AE > EO). Gọi H là trung điểm của AE. Kẻ dây CD ⊥ AE tại H
1) Cm AC ⊥ BC
2) Tứ giác ACED là hình gì, chứng minh
3) Gọi I là giao điểm của DE và BC. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)
b: Xét (O) có
OH là một phần đường kính
CD là dây
OH\(\perp\)CD tại H
Do đó: H là trung điểm của CD
Xét tứ giác ECAD có
H là trung điểm của đường chéo CD
H là trung điểm của đường chéo EA
Do đó: ECAD là hình bình hành
mà EA\(\perp\)CD
nên ECAD là hình thoi
Tại 2 câu đầu khá dễ nên mình sẽ không chỉ ha
Gọi M là tâm đường tròn đường kính EB
Ta có : Tứ giác ACED là hình thoi
=> CE//AD
Mà AD vuông góc DB ( góc nội tiếp chắn nửa đường tròn )
Nên CE vuông góc DB
Xét tam giác BDC ta có :
BH là đường cao ( BH vuông góc CD)
CE là đường cao ( CE vuông góc DB)
BH cắt CE tại E
=> E là trực tâm tam giác BDC
=> DE vuông góc CB
=> góc EIB = 90 độ
=> I thuộc đường tròn M
Xét tứ giác IEHC ta có :
EIB = 90 độ
BHC= 90 độ
=>góc EIB = góc BHC
=> Tứ giác IEHC nội tiếp
=>góc EIH = góc ECH
Mà góc ECH = góc EDH = góc ADC ( tính chất hình thoi ACED)
góc ADC = góc ABC ( 2 góc nội tiếp chắn cung AC )
Nên góc EIH = góc ABC(1)
Ta có Tam giác EIB vuông tại I có M là trung điểm EB
=> tam giác IMC cân tại M
=> góc MBI = góc MIB (2)
(1) và (2) => góc EIH = góc MIB
Ta có góc EIM + góc MIB= 90
góc MIB = góc EIH
=> góc EIM + góc EIH =90
=> HIM = 90
Xét đường tròn tâm M ta có:
I thuộc (M)
HI vuông góc IM ( cmt )
=> HI là tiếp tuyến của đường tròn đường kính EB
Ta có: AH=EH(H là trung điểm của AE)
mà \(AH=\dfrac{1}{3}R\)(gt)
nên \(EH=\dfrac{1}{3}R\)
Ta có: AH+EH=AE(H là trung điểm của AE)
nên \(AE=\dfrac{1}{3}R+\dfrac{1}{3}R=\dfrac{2}{3}R\)
Ta có: AE+OE=OA(E nằm giữa O và A)
nên \(OE=OA-AE=R-\dfrac{2}{3}R=\dfrac{1}{3}R\)
Ta có: OE+EH=OH(E nằm giữa O và H)
nên \(OH=\dfrac{1}{3}R+\dfrac{1}{3}R=\dfrac{2}{3}R\)
Áp dụng định lí Pytago vào ΔOHD vuông tại H, ta được:
\(OD^2=OH^2+HD^2\)
\(\Leftrightarrow HD^2=R^2-\dfrac{4}{9}R^2=\dfrac{5}{9}R^2\)
\(\Leftrightarrow HD=\dfrac{\sqrt{5}}{3}R\)
Xét (O) có
OA là một phần đường kính
CD là dây
OA\(\perp\)CD tại H(gt)
Do đó: H là trung điểm của CD(Định lí đường kính vuông góc với dây)
\(\Leftrightarrow CD=2\cdot DH=2\cdot\dfrac{\sqrt{5}}{3}R=\dfrac{2\sqrt{5}}{3}R\)