Tính:
\(a.\left(3^{35}+3^{34}-3^{33}\right)\div3^{32}\)
\(b.5^3\times37+5^3\times64-5^7\div5^4\)
Nhanh tay lên đc tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,1-3+5-7+9-.......+33-35
=(1+5+9+....+33)-(3+7+11+...+35)
=153-171
=-18
Tick mk vài cái lên 300 mk giải nốt phần b
1/a) 12 - x= 1-(-5)
12 - x = 6
x= 12-6
x=6
b)| x+4|= 12
x+4 = \(\pm\)12
*x+4=12
x=8
*x+4= -12
x=-16
2/Tìm n
\(n-5⋮n+2\)
=> \(n+2-7⋮n+2\)
mà \(n+2⋮n+2\)
=> 7\(⋮\)n+2
=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}
n+2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
3/a)4.(-5)2 + 2.(-12)
= 2.2.(-5)2 + 2.(-12)
=2[2.25.(-12)]
=2.(-600)
=-1200
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
a) \(4\frac{5}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)=\frac{41}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)\)
\(=\frac{41}{9}\cdot\left(-\frac{7}{5}\right)+\frac{49}{9}\cdot\left(-\frac{7}{5}\right)=\left(\frac{41}{9}+\frac{49}{9}\right)\cdot\left(-\frac{7}{5}\right)=10\cdot\left(-\frac{7}{5}\right)=-14\)
b) \(\left(\frac{-3}{5}+\frac{4}{9}\right):\frac{7}{11}+\left(\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{4}{9}+\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{-2}{5}+\frac{4}{9}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(-1+1\right):\frac{7}{11}=0\cdot\frac{11}{7}=0\)
c) \(\left(\frac{3}{4}\right)^4\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\right)^2\cdot\left(\frac{3}{4}\right)^2\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\cdot\frac{3}{4}\cdot\frac{8}{9}\right)^2\)
\(=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
d) \(\left(-\frac{3}{5}\right)^6\cdot\left(-\frac{5}{3}\right)^5=\left(-\frac{3}{5}\right)^5\cdot\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)^5=\left[\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)\right]^5\cdot\left(-\frac{3}{5}\right)\)
\(=1^5\cdot\left(-\frac{3}{5}\right)=1\cdot\left(-\frac{3}{5}\right)=-\frac{3}{5}\)
e) \(\frac{8^{14}}{4^4\cdot64^5}=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^4\cdot\left(2^6\right)^5}=\frac{2^{42}}{2^8\cdot2^{30}}=\frac{2^{42}}{2^{38}}=2^4=16\)
f) \(\frac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\frac{\left(3^2\right)^{10}\cdot\left(3^3\right)^7}{\left(3^4\right)^7\cdot3^{15}}=\frac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\frac{3^{41}}{3^{43}}=3^{-2}=\frac{1}{3^2}=\frac{1}{9}\)
a) \(\left(3^{35}+3^{34}-3^{33}\right):3^{32}\)
\(=\frac{3^{35}}{3^{32}}+\frac{3^{34}}{3^{32}}-\frac{3^{33}}{3^{32}}\)
\(=3^3+3^2-3\)
\(=27+9-3\)
\(=33\)
b) \(5^3.37+5^3.64-5^7:5^4\)
\(=5^3.37+5^3.64-5^3\)
\(=5^3\left(37+64-1\right)\)
\(=5^3.100\)
\(=125.100\)
\(=12500\)
\(\left(3^{35}+3^{34}-3^{33}\right)\div3^{32}=3^{33}\left(3^2+3-1\right)\div3^{32}\)
\(=3^{33}.11\div3^{32}=11\left(3^{33-32}\right)=11.3=33\)