K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 5 2021

Thử lại.

Với \(a-3b=1\Leftrightarrow a=3b+1\):

\(4a+1=12b+5\).

Đặt \(d=\left(12b+5,4b-1\right)\)

Suy ra \(\hept{\begin{cases}12b+5⋮d\\4b-1⋮d\end{cases}}\Rightarrow12b+5-3\left(4b-1\right)=8⋮d\Leftrightarrow d\inƯ\left(8\right)\)mà \(d\)lẻ nên \(d=1\).

\(a+b=3b+1+b=4b+1\)

\(16ab+1=16b\left(3b+1\right)=48b^2+16b+1=\left(12b+1\right)\left(4b+1\right)⋮\left(4b+1\right)\)

Do đó thỏa mãn. 

Trường hợp còn lại tương tự, và cũng thỏa mãn. 

DD
25 tháng 5 2021

Ta có: 

\(\left(4a+1,4b-1\right)=1\Leftrightarrow\left(4a+1,4a+4b\right)=1\Leftrightarrow\left(4a+1,a+b\right)=1\)

\(\left(a+b\right)|\left(16ab+1\right)\Leftrightarrow\left(a+b\right)|\left(16ab+4a+4b+1\right)\Leftrightarrow\left(a+b\right)|\left(4a+1\right)\left(4b+1\right)\)

\(\Leftrightarrow\left(a+b\right)|\left(4b+1\right)\)(1)

\(16ab+1=16a\left(b+a\right)-16a^2+1=16a\left(a+b\right)-\left(4a-1\right)\left(4a+1\right)\)

\(\Rightarrow\left(a+b\right)|\left(4a-1\right)\)(2)

lại có: \(\left(4a-1\right)+\left(4b+1\right)=4\left(a+b\right)\)mà \(a,b\inℕ^∗\)

kết hợp với (1), (2) suy ra \(a+b=k\left(4b+1\right),k=\overline{1,3}\)

Suy ra \(\orbr{\begin{cases}a-3b=1\\3a-b=1\end{cases}}\)

25 tháng 10 2020

thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)

có bổ đề SCP LẺ chia 8 dư 1 do đó:

trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)

25 tháng 10 2020

\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)

\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)

thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)

đến đây thì đơn giản

29 tháng 6 2015

xét 1 trong a hoặc b là số nguyên tố lẻ thì 0<a,b<10.

  + Các số nguyên tố thõa mãn là 3;5;7.

        => Số còn lại lần lượt là 7;5;3

=> Chỉ có các số nguyên tố 3,7,9 thõa mãn.

 . Nếu 1 trong 2 a,b là số chẵn ( = 2,4,6,8) thì hai số luôn có ước 1, 2, chính nó,..... không nguyên tố cùng nhau.

 + Các số lẻ còn lại chỉ còn số 9 thõa mãn.

 => Số còn lại bằng 1

Bạn tự xét các cặp a,b nha

29 tháng 6 2015

Uk mình cũng không phải người ra đề nên chịu chỉ hỏi thay

30 tháng 6 2015

b) số nguyên tố chỉ có 2 ước là 1 và chính nó:

nếu tổng các ước là 1 => 1 + số đó = 18 => số đó = 18 - 1 = 17 là số nguyên tố (nhận)

Nếu tổng các ước là 19 => 1 + số đó = 19 => số đó = 19 - 1 = 18 không là số nguyên tố => không tồn tại

28 tháng 6 2015

Câu a, a+b=10=1+9=2+8=3+7=4+6=5+5

Ta thấy chỉ có (1;9)=1 và (3;7)=1

=> Các cặp số a,b thỏa mãn là a=1;b=9

                                              a=9;b=1

                                              a=3;b=7

                                              a=7;b=3

 

27 tháng 5 2021

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

27 tháng 5 2021

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....