K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

Gọi O là giao điểm của AH và IK, N là giao điểm của AM và IK. Ta có 

MAK = MCK, OKA = OAK nên

MAK + OKA = MCK + OAK = 90 độ

Do đó AM vuông góc IK

18 tháng 11 2018

bạn ơi bạn làm như giải ý 

2 tháng 12 2015

I là hình chiếu của H trên AB => HI vuông góc vs AB => góc AIH = 900
tương tự ta có: K là hình chiếu của H trên AC => HK vuông góc vs AC => góc AKH = 900
Tứ giác AIHK  là hình chữ nhật vì có BAC=ADH=HKA=900
=>IO=OA(cho O là giao điểm giữa 2 đường chéo AH và IK)
=>góc IAO=góc AIO(1)
Có AM là đường trung tuyến ứng vs cạnh huyền(M là trung điểm BC) của tam giác vuông ABC
 => tam giác ACM cân tại M => góc MAC = góc MCA  (2)
Mặt khác góc MCA= góc IAO vì cùng phụ vs AH.(3)
Từ (1),(2) và (3) => góc IAO= góc MAC= góc MCA
Tam giác AIK vuông tại A nên góc AKI+ góc AIK=900  =>góc MAK + góc IKA =900
Gọi giao điểm của AM vs IK là F thì từ tam giác AKF ta có  góc AFK =900 hay AM vuông góc vs IK

tự vẽ hình nhé ^,^
 

b: Xét tứ giác AIHK có 

\(\widehat{KAI}=\widehat{AIH}=\widehat{AKH}=90^0\)

Do đó: AIHK là hình chữ nhật

Suy ra: IK=AH

3 tháng 5 2022

a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)

-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.

\(\Rightarrow\)△ACH∼△BCA (g-g) 

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).

△ABC có: IH//BC (cùng vuông góc AB).

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).

-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).

\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).

\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).

-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AIK∼△ACB (g-g).

\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)

\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)

3 tháng 5 2022

b) *CM cắt AH tại D, BM cắt AC tại F.

AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.

E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).

\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)

\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).

\(\Rightarrow BM=FM\) nên M là trung điểm BC.

-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).

-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)

\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.

\(\Rightarrow\)D là trung điểm IK.

-Vậy IK, AH, CM đồng quy tại D.