tìm x
\(5^x+5^{x+1}+5^{x+2}=775\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x-1}+5^{x-2}+5^{x-3}=775\\ 5^{x-3}.\left(25+5+1\right)=775\\ 5^{x-3}.31=775\\ 5^{x-3}=\dfrac{775}{31}=25=5^2\\ x-3=2\\ x=5\)
\(5^x+5^{x+1}+5^{x+2}=775\)
<=>\(5^x.\left(1+5+5^2\right)=775\)
<=>\(5^x.31=775\)
<=>\(5^x=775:31\)
<=>\(5^x=25\)=>\(x=2\)
5x + 5x + 1 + 5x + 2 = 775
\(\Rightarrow\) 5x + 5x + 1 + 5x + 2 = 52 + 52 + 1 + 52 + 2
\(\Rightarrow\) x = 2
5x + 5x+1 + 5x+2 = 775
5x . 1 + 5x . 5 + 5x + 52 = 775
5x . (1 + 5 + 25 ) = 775
5x . 31 = 775
5x = 775 : 31
5x = 25
5x = 52
x=2
a, \(-5x-1-\dfrac{x}{2}+\dfrac{1}{3}=\dfrac{3}{2}x-5\Leftrightarrow-7x=-\dfrac{13}{3}\Leftrightarrow x=\dfrac{13}{21}\)
b, \(3x-\dfrac{3}{2}-5x-3=-x+\dfrac{1}{5}\Leftrightarrow-x=\dfrac{47}{10}\Leftrightarrow x=-\dfrac{47}{10}\)
\(5^x+5^{x+1}+5^{x+2}=775\)
\(\Leftrightarrow5^x.1+5^x.5+5^x.5^2=775\)
\(\Leftrightarrow5^x.\left(1+5+5^2\right)=775\)
\(\Leftrightarrow5^x.\left(1+5+25\right)=775\)
\(\Leftrightarrow5^x.31=775\)
\(\Rightarrow5^x=775:31=25=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
5x + 5x + 1 + 5x + 2 = 775
5x . 1 + 5x . 5 + 5x . 25 = 775
5x . (1 + 5 + 25) = 775
5x . 31 = 775
5x = 775 : 31
5x = 25
5x = 52
Suy ra : x = 2