TÌM GIÁ TRỊ NHỎ NHẤT CỦA
A=/x-2011/+/x-2/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
=> /x-2011/\(\ge0\)
/x-2/\(\ge0\)
=> min A=0 khi x=2011 hoặc 2
tíc mình nha
x | 2 | 2011 | ||
!x-2011! | 2011-x | 2009 | 0 | x-2011 |
!x-2! | 2-x | 0 | 2009 | x-2 |
A | 2011-x+2-x | 2009 | 2009 | x-2011+x-2 |
A | 2013-2x | 2009 | 2009 | 2x-2013 |
A(min)=2009 khi \(2\le x\le2011\)
vì |x-2010|\(\ge\)0
(y+2011) 2010\(\ge\)0
=>|x-2010|+(y+2011) 2010\(\ge\)0
=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011
dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0
<=>x=2010 và y=-2011
vậy Amin=2011 khi x=2010 và y=-2011
\(A=\left|x-2011\right|+\left|x-200\right|\)
\(=\left|2011-x\right|+\left|x-200\right|\ge\left|2011-x+x-200\right|=1811\)
Vậy \(MinA=1811\Leftrightarrow\left(2011-x\right)\left(x-200\right)\ge0\Leftrightarrow200\le x\le2011\)
ta có
A=/x-2011/ + /x-1/=/x-2011/+/1-x/
áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>A =/x-2011/+/1-x/\(\ge\) /x-2011+1-x/=2010
\(\left(\frac{3}{4}x-5\right)^2=\frac{9}{49}\)
=>\(\left(\frac{3}{4}x-5\right)^2=\left(\frac{3}{7}\right)^2\)
=>\(\frac{3}{4}x-5=\frac{3}{7};\frac{3}{4}x-5=-\frac{3}{7}\)
=>x=\(\frac{152}{21}\);x=\(\frac{128}{21}\)
b)Vì Ix+2I và I2y-10I luôn lớn hơn hoặc bằng 0
=>Để S đạt giá trị nhỏ nhât thì Ix+2I=0 và I2y-10I=0
=>x=-2;y=5
Vậy giá trị nhỏ nhất của S là:
0+0+2011=2011
KL:Với x=-2;y=5 thì S đạt giá trị nhỏ nhất =2011
\(A=\left|x-2011\right|+\left|x-2\right|\)
\(\Rightarrow\left|x-2\right|\ge0\)
\(\Rightarrow Min_A=0\)khi \(x=2011\)hoặc 2