K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

x=1/5 : 3 1/2

x= 2/35

30 tháng 9 2017

31/2 x X =1/5

           x= 1/5 :31/2

           x=1/5 x 2/31

           x=2/155

3 tháng 8 2021

\(\dfrac{3}{5}+\dfrac{1}{2}+\dfrac{3}{10}=\dfrac{6}{10}+\dfrac{5}{10}+\dfrac{3}{10}=\dfrac{14}{10}=\dfrac{7}{5}\)

3 tháng 8 2021

`3/5+1/2+3/10=6/10+5/10+3/10=14/10=7/5`

4 tháng 12 2017

\(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)

\(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)

\(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x+1}+\dfrac{-\left(x+3\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}+\dfrac{-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{\left(3x+1\right)\left(x+1\right)-\left(x-1\right)^2-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{3x^2+4x+1-\left(x^2-2x+1\right)-\left(x^2+2x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x^2+x+3x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x+3}{\left(x-1\right)^2}\)

4 tháng 12 2017

\(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)

\(=\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}+\dfrac{-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x^2+3x+x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{x+3}{\left(x-1\right)^2}\)