Cho 3 số thực dương a,b,c thỏa mãn:\(a^2+b^2+c^2=3\). Chứng minh:\(\frac{1}{\sqrt{1+8a^3}}+\frac{1}{\sqrt{1+8b^3}}+\frac{1}{\sqrt{1+8c^3}}\)lớn hơn hoặc bằng 1,
mọi người giúp em với ạ, em cảm ơn nhiều, em đang cần gấp. trả lời đi rồi em vào wall like cho hết ạ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ap dung bdt am gm
\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)
\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)
tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)
\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)
tiep tuc ap dung bat cauchy-schwarz dang engel ta co
\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)
dau = xay ra \(\Leftrightarrow a=b=c=1\)