K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

bạn ghi rõ đề bài ra nhé

đề bài là tìm n thuộc N nhé

AH
Akai Haruma
Giáo viên
17 tháng 4 2022

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

17 tháng 1 2016

-8(-7)+(-3).(-5)-(-4).9+2(-6)

=35+15-(-36)+(-12)

=74

15(-3)-(-7).(+2)+4.(-6)-7(-9)

=-45-(-14)+ (-24)-(-63)

8

17 tháng 1 2016

n+15 chia het cho n-2

n-2+17 chia het cho n-2

suy ra 17 chia hết cho n-2

n-2-17-1117
n-1513

19

 

mấy cau sau tuong tu

 

7 tháng 11 2016

n+13 chia hết cho n-5

suy ra (n-5)+18 chia het co n-5

ma n-5 ciha het cho n-5

suy ra 18 chia het cho n-5

n-5thuoc uoc cua 18

tu do tinh ra va cac cau sau lm tuong tu

 

7 tháng 11 2016

mk lm dung day ,yen tam

10 tháng 8 2018

a) ta có: 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n -1

3.(n-1) + 5 chia hết cho n - 1

mà 3.(n-1) chia hết cho n -1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5)={1;-1;5;-5}

...

rùi bn tự lập bảng xét giá trị hộ mk nha!!!

b) ta có: n^2 + 2n + 7 chia hết cho n + 2

=> n.(n+2) + 7 chia hết cho n + 2

mà n.(n+2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

c) ta có: n^2 + 1 chia hết cho n - 1

=> n^2 - n + n -1 + 2 chia hết cho n - 1

n.(n-1) + (n-1) + 2 chia hết cho n -1

(n-1).(n+1) + 2 chia hết cho n - 1

mà (n-1).(n+1) chia hết cho n - 1

=> 2 chia hết cho n - 1

...

câu e;g bn dựa vào phần a mak lm nha!!!

\(d,n+8⋮n+3\)

\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)

\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)

\(\Leftrightarrow n+3\in\left(1;5\right)\)

\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)

\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)

21 tháng 1 2018

a, Ta có:

\(\dfrac{4n-11}{4n-8}\)=\(\dfrac{4n-8-3}{4n-8}=\dfrac{4n-8}{4n-8}+\dfrac{-3}{4n-8}=1+\dfrac{-3}{4n-8}\)

\(\Rightarrow\)-3 \(⋮\) 4n - 8

\(\Rightarrow\)4n-8 \(\in\) Ư (-3) ={\(\pm\)1; \(\pm\)3}

Ta có bảng sau:

4n-8 -1 1 -3 3
n \(\dfrac{7}{4}\) \(\dfrac{9}{4}\) \(\dfrac{5}{4}\) \(\dfrac{11}{4}\)

Vậy x \(\in\){ \(\varnothing\) }

21 tháng 1 2018

b, Ta có:

2n + 1 \(⋮\) n + 1

\(\Rightarrow\) 2.(n+1) \(⋮\) n+1

\(\Rightarrow\)2 \(⋮\) n+1

\(\Rightarrow\) n+1 \(\in\) Ư (2) = { -1 ; -2; 1; 2 }

Ta có các trường hợp sau:

n + 1 = -1 \(\Rightarrow\) n= -2

n + 1 = -2 \(\Rightarrow\) n= -3

n + 1 = 1 \(\Rightarrow\) n= 0

n + 1 = 2 \(\Rightarrow\) n= 1

Vậy n \(\in\) { -2;-3;0;1 }

d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)

\(\Leftrightarrow1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2n\in\left\{0;-2\right\}\)

hay \(n\in\left\{0;-1\right\}\)

Mk trả lời mỗi câu khó nha!!!

d*) \(\dfrac{n+1}{2n+1}\in Z\) 

Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\) 

\(n+1⋮2n+1\) 

\(\Rightarrow2.\left(n+1\right)⋮2n+1\) 

\(\Rightarrow2n+2⋮2n+1\) 

\(\Rightarrow2n+1+1⋮2n+1\) 

\(\Rightarrow1⋮2n+1\) 

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

2n+1-11
n-10

Vậy \(n\in\left\{-1;0\right\}\)