Với p là số nguyên tố p>3 CMR p2-1chia hết cho 24.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sua dau bai la CMR neu p va 10p-1 la 2 so nguyen to ,p>3 thi p+1 chia het cho 6
Vi p la 2 so nguyen to suy ra p la so le suy ra p+1 la so chan suy ra p+1 chia het cho 2(1)
Vi p la so nguyen to lon hon 3 nen p co 2 dang:
3k+1;3k+2(k thuoc N*)
Voi p =3k+1
Ta co:10p-1=10(3k+1)-1=10x3k+10-1=10X3k+9=3(10k+3)
Voi k thuoc N* suy ra 3(10k+3) chia het cho 3 va 3(10k+3)>3 suy ra 3(10k+3) la hop so hay 10p-1 la hop so(loai)
Voi p=3k+2
Ta có p+1=3k+2+1=3k+3=3(k+1)
Với k thuộc N* suy ra 3(k+1) chia hết cho 3 suy ra p+1 chia het cho 3(2)
Ma (2;3)=1(3)
Từ(1);(2);(3) suy ra p+1 chia hết cho 2x3
hay p+1 chia het cho 6
Vay neu p va 10p-1 la 2 so nguyen ,p>3 thi p+1 chia het cho 6
Bạn đang muốn chứng minh $2025-p^2\vdots 24$ đúng không? Nếu như vậy thì đề sai vì $2025\vdots 3$ và $p^2\not\vdots 3$ vì $p$ là số nguyên tố lớn hơn $3$
$\Rightarrow 2025-p^2\not\vdots 3$ nên $2025-p^2$ cũng không chia hết cho $24$
Do p là số nguyên tố lớn hơn 3 nên p là số lẻ.
⇒ Hai số p–1,p+1p–1,p+1 chẵn.
⇒(p–1).(p+1)⋮8⇒(p–1).(p+1)⋮8 (1)
Ta có : p là số nguyên tố lớn hơn 3 nên p=3k+1p=3k+1 hoặc p=3k+2p=3k+2 (k thuộc N*).
+) Với p=3k+1p=3k+1:
⇒(p–1)(p+1)=3k.(3k+2)⋮3⇒(p–1)(p+1)=3k.(3k+2)⋮3
+) Với p=3k+2p=3k+2:
⇒(p–1)(p+1)=(3k–1).3.(k+1)⋮3⇒(p–1)(p+1)=(3k–1).3.(k+1)⋮3
Do đó : (p–1)(p+1)⋮3(p–1)(p+1)⋮3 (2)
Vì vậy : (p–1)(p+1)⋮24(p–1)(p+1)⋮24
bạn phải nói rõ hơn ở dòng 2 và 3 khi đi thi nha