K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

Sửa đề :

Tìm tất cả cặp số nguyên x, y thỏa mãn: y2+2xy−3x−2=0

Giải 

Coi phương trình đã hco là phương trình bậc hai ẩn yy có tham số x.x.

Ta có: Δ=4x2+12x+8.Δ=4x2+12x+8.

Vì x, y∈Z⇒Δx, y∈Z⇒Δ phải là số chính phương.

⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔⎡⎢ ⎢ ⎢ ⎢⎣{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔⎡⎢ ⎢ ⎢ ⎢⎣{x=−1(tm)k=0{x=−2(tm)k=0.⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔[{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔[{x=−1(tm)k=0{x=−2(tm)k=0.

Với x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1   (tm).x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1   (tm).

Với x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2  (tm).x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2  (tm).

Vậy tập nghiệm của phương trình đã cho là: (x; y)={(−1; 1);  (−2; 2)}.

Nó bị lỗi phông thông cảm 

HT

10 tháng 12 2017

\(y^2+2xy-3x-2=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\) (1)

Ta thấy \(\left(x+1\right)\left(x+2\right)\) là tích 2 số nguyên liên tiếp nên nó ko thể là số chính phương

=> 1 vô lý hay PT ko có nghiệm nghyên

1 tháng 11 2018

\(y^2+2xy-3x-2=0.\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

Vì Vế trái là số chính phương nên vế phải cx là số chính phương!! nhưng trong trường hợp này VP ko thế nào là số chính phương đc!! 

=> x+1=0 hoặc x+2=0

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=-2\Rightarrow y=2\end{cases}}}\)

Vậy...

29 tháng 6 2020

Ta có \(y^2-2xy-3x-2=0\Leftrightarrow x^2+2xy+y^2=x^2+3x+2\) (*)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

VT của (*) là số chính phương; VP của (*) là tách của 2 số nguyên liên tiếp nên phải có 1 số bằng 0

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=2\Rightarrow y=2\end{cases}}}\)

Vậy có 2 cặp số nguyên (x;y)=(-1;1);(-2;2)

21 tháng 2 2019

\(y^2+2xy-\left(3x+2\right)=0\)   (1)

Để (1) có nghiệm thì \(\Delta'=x^2-\left[-4\left(3x+2\right)\right]\ge0\)

\(\Leftrightarrow x^2+12x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le-6-2\sqrt{7}\\-6+2\sqrt{7}\le x\end{cases}}\)

Để (1) có nghiệm thì \(\Delta'\) là số chính phương.Đặt:

\(x^2+12x+8=k^2\Leftrightarrow\left(x+6\right)^2-28=k^2\)

\(\Leftrightarrow\left(x+6\right)^2-k^2=28\Leftrightarrow\left(x+6-k\right)\left(x+6+k\right)=28\)

Dễ thấy: \(x+6-k< x+6+k\).Lập bảng các ước của 28 và làm tiếp -_-