Tính tổng sau
a, S=1+2+3+4....98+99+100
b, S=1+2+3+4....2014+2015+2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015
S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015
S1 = (-1) + (-1) + ... + (-1) + 2015
2014 : 2 = 1007
S1 = (-1) . 1007 + 2015
S1 = (-1007) + 2015
S1 = 1008
b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016
S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]
S2 = 2 + 2 + ... 2
2016 : 2 = 1008
S2 = 2 . 1008
S2 = 2016
c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)
S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]
S3 = (-2) + (-2) + ... + (-2)
(2015 - 1) : 2 + 1 = 1008 : 2 = 504
S3 = (-2) . 504
S3 = -1008
d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016
S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0
S4 = 2016 + 0
S4 = 2016
a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)
b, làm tương tự phần a
c, cũng làm tương tự
d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)
a) \(S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)
\(\Leftrightarrow S=\left(1-2\right)+\left(3-4\right)+....+\left(2013-2014\right)+2015\)
Vì từ 1 đến 2014 có 2014 số hạng => có 1007 cặp => Có 1007 cặp -1 và số 2015
\(\Rightarrow S=\left(-1\right)\cdot1007+2015\)
<=>S=-1007+2015
<=> S=1008
S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1
= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 ) (có tất cả 2020 : 4 = 505 nhóm)
= 4 + 4 + ... + 4
= 4. 505 = 2020
Vậy S = 2020.
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
Đề sai hình như đề phải là S=1-2+3-4+5-6(+)...(+)2014-2015+2016
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2014}+\frac{1}{2015}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)=\frac{1}{1008}+\frac{1}{1009}+....+\frac{1}{2015}\)
Mà \(P=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Leftrightarrow S-P=0\) \(\Rightarrow\left(S-P\right)^{2016}=0\)
a
so so hang
(100-1):1+1=100(so hang)
tong bang
(100+1)x100:2=5050
a, số các số hạng là : ( 100 - 1 ) : 1 + 1 = 100 ( số )
tổng S là : ( 100 + 1 ) x 100 : 2 = 5050
b, số các số hạng là : ( 2016 - 1 ) : 1 + 1 = 2016 ( số )
tổng S là : ( 2016 + 1 ) x 2016 : 2 = 2 033 136
đúng 100% luôn bn **** cho mh nha .