Cho tam giác ABC vuông tại A , đường cao Ah .Biết HB = 25 cm, hc=64 cm .Tính góc B và góc C cua tam giác trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có: BC = HB + HC = 25 + 64 = 89 cm
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:
Lời giải:
$BC=BH+CH=25+64=89$ (cm)
Áp dụng công thức hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH=25.64\Rightarrow AH=40$ (cm)
Diện tích tam giác $ABC$ là: $AH.BC:2=40.89:2=1780$ (cm2)
\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)
nên \(\widehat{B}\simeq58^0\)
hay \(\widehat{C}=32^0\)
b) ΔAHB vuông tại H
Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2
⇒ 42 + 22 = AB2
⇒AB2 = 20
⇒AB = √20
ΔAHC vuông tại H
Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2
⇒42 +82 = AC2
⇒ AC2 = 80
⇒AC = √80
b)Vì AB>AC(√20>√80)
⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)
Cô hướng dẫn nhé :)
a. \(\Delta ABH=\Delta ADH\) (Hai cạnh góc vuông)
b. Ta thấy góc CDE = góc HDA (đối đỉnh) \(\Rightarrow\) góc DEC = góc HAD (Cùng phụ với hai góc bên trên)
Lại do câu a có \(\Delta ABH=\Delta ADH\) nên góc DAH = góc HAB. Mà góc HAB = góc HCA.
Vậy góc ECD = góc DCA
c. Xét tam giác ACM có CH vừa là đường cao, vừa là phân giác nên tam giác ACM cân tại C.
Chúc em học tốt ^^
cô ơi sao góc DEC là góc vuông còn góc HAD là góc nhọn sao bằng nhau được ạ
a.Áp dụng hệ thức h^2=b'.c' vào tam giác vuông ABC ta có: AH^2=HB.HC(đpcm)
AH^2=HB.HC suy ra AH^2=1,8.3,2 suy ra AH^2=5,76 suy ra AH=2,4
S tam giác ABC=1/2 AH.(HB+HC)=1/2.2,4.5=6