Cho biểu thức \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-x}-\frac{\sqrt{x}+2}{1-x}\right)\) với \(\left(x>0;x\ne1\right)\)
a. Rút gọn biểu thức M
b. tìm tất cả các giá trị của x để biểu thức M nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}\)
b) Để M>0 thì \(\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}>0\)
mà \(\forall\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\), ta luôn có: \(\sqrt{x}\left(3\sqrt{x}+1\right)>0\)
nên \(\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)>0\)
mà \(\left(\sqrt{x}+1\right)^2>0\forall0< x\ne1\)
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\)
hay x>1(nhận)
Vậy: để M>0 thì x>1
a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)
\(\Leftrightarrow\sqrt{x}+1\ge1\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)
\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi x=0
Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0
\(M=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}-1}\)
\(M=-\frac{1}{2}\Leftrightarrow\frac{x}{\sqrt{x}-1}=-\frac{1}{2}\Leftrightarrow2x=1-\sqrt{x}\)
\(\Leftrightarrow2x+\sqrt{x}-1=0\Leftrightarrow\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow2\sqrt{x}-1=0\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
\(M=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(M=\frac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(M=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+2-2+x}\)
\(M=\frac{x\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}+1}\)
b/ \(\frac{x}{\sqrt{x}+1}=\frac{-1}{2}\Leftrightarrow2x=-\sqrt{x}-1\Leftrightarrow2x+\sqrt{x}+1=0\) (vô n)
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-x}-\frac{\sqrt{x}+2}{1-x}\)
\(\Leftrightarrow M=\frac{1}{1-\sqrt{x}}-\frac{\sqrt{x}+2}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
\(\Leftrightarrow M=\frac{1+\sqrt{x}-\sqrt{x}-2}{1-x}\)
\(\Leftrightarrow M=\frac{-1}{1-x}\)
\(\Leftrightarrow M=\frac{1}{x-1}\)
b) Để M nhận giá trị nguyên
\(\Leftrightarrow\frac{1}{x-1}\inℤ\)
\(\Leftrightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{0;2\right\}\)
Mà \(x>0\)
Vậy để M nguyên \(\Leftrightarrow x=2\)