K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

\(C=3\left|x-2\right|+\left|3x+1\right|=\left|3x-6\right|+\left|3x+1\right|=\left|6-3x\right|+\left|3x+1\right|\)

\(\ge\left|6-3x+3x+1\right|=7\)

Dấu "=" xảy ra khi \(-\frac{1}{3}\le x\le2\)

4 tháng 10 2021

b)

Vì (3x+12)^2 luôn > hoặc = 0 với mọi x

=> (3x+12)^2-100> hoặc =0 -100

Vậy GTNN của B =-100

Dấu "=" xảy ra khi 3x+12=0

3x=-12

x=-4

 

21 tháng 9 2017

Cần cm : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng; dấu "=" xảy ra \(\Leftrightarrow ab\ge0\))

Áp dụng ta có :

\(A=\left|x+3\right|+5\left|6x+1\right|+\left|x-1\right|+3=\left(\left|x+3\right|+\left|1-x\right|\right)+5\left|6x+1\right|+3\)

\(\ge\left|x+3+1-x\right|+5\left|6x+1\right|+3=5\left|6x+1\right|+7\ge7\) có GTNN là 7

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(1-x\right)\ge0\\\left|6x+1\right|=0\end{cases}\Rightarrow x=-\frac{1}{6}\left(TM\right)}\)

vẬY \(D_{min}=7\) khi \(x=-\frac{1}{6}\)

Câu 1: 

a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)

\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)