K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

dat m = 3k + r voi 0 \(\le\)\(\le\) 2 va n = 3t + s

=> xm  + xn + 1  = x3k + r + x3t +s + 1 = x3k. xr - xr + x3t . xs - xs + xr + xs +1

                                                     = xr ( x3t -1) + xs ( x3t - 1) + xr + xs + 1

ta thay: x3k-1 \(⋮\)  \(\left(x^2+x+1\right)\)va \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\) 

vay \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)voi \(0\le r;s\le2\)

\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)

\(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)

\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)

\(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)

\(\Rightarrow\left(mn-2\right)⋮3\)

ap dung:  \(m=7;n=2;\Rightarrow mn-2=12⋮3\)

\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)

\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)

18 tháng 9 2017

⇒xm+xn+1=x3k+r+x3t+s+1=x3k.xr−xr+x3t.xs−xs+xr+xs+1

                                                                       =xr(x3t−1)+xs(x3t−1)+xr+xs+1

Ta thấy: (x3k−1)chia hết (x2+x+1)và (x3t−1) chia hết (x2+x+1)

Vậy: (xm+xn+1)chia hết (x2+x+1)

⇔(xr+xs+1)chia hết (x2+x+1)với 0≤r;s≤2

⇔r=2;x=1⇒m=3k+2;n=3t+1

      r=1;s=2⇒m=3k+1;n=3t+2

⇔mn−2=(3k+2)(3t+1)−2=9kt+3k+6t=3(3kt+k+2t)

      mn−2=(3k+1)(3t+2)−2=9kt+6k+3t=3(3kt+2k+t)

⇒mn−2chia hết cho 3.

Áp dụng:m=7;n=2⇒mn−2=12chia hết cho 3

⇒(x7+x2+1) chia hết cho (x2+x+1)

8 tháng 9 2016

Bây giờ mình sẽ trả lời chính câu hỏi của mình để các bạn tham khảo:

Đặt: \(m=3k+r\) với \(0\le r\le2\)và \(n=3t+s\)

\(\Rightarrow x^m+x^n+1=x^{3k+r}+x^{3t+s}+1\)\(=x^{3k}.x^r-x^r+x^{3t}.x^s-x^s+x^r+x^s+1\)

                                                                       \(=x^r\left(x^{3t}-1\right)+x^s\left(x^{3t}-1\right)+x^r+x^s+1\)

Ta thấy: \(\left(x^{3k-1}\right)\)chia hết \(\left(x^2+x+1\right)\)và \(\left(x^{3t}-1\right)\) chia hết \(\left(x^2+x+1\right)\)

Vậy: \(\left(x^m+x^n+1\right)\)chia hết \(\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x^r+x^s+1\right)\)chia hết \(\left(x^2+x+1\right)\)với \(0\le r;s\le2\)

\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)

      \(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)

\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)

      \(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)

\(\Rightarrow mn-2\)chia hết cho \(3\).

Áp dụng:\(m=7;n=2\Rightarrow mn-2=12\)chia hết cho 3

\(\Rightarrow\left(x^7+x^2+1\right)\) chia hết cho \(\left(x^2+x+1\right)\)

\(\Rightarrow\left(x^7+x^2+1\right):\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)

Bạn chứng minh hộ mình

\(x^{3t}-1\) chia hết cho \(x^2+x+1\) với 

7 tháng 2 2018

http://lazi.vn/edu/exercise/biet-rang-da-thuc-px-chia-het-cho-da-thuc-x-a-khi-va-chi-khi-pa-0-hay-tim-cac-gia-tri-cua-m-va-n

7 tháng 2 2018

Bài tham khảo:

0

Đa thức P(x) chia hết cho đa thức x - a,Tìm các giá trị của m và n,Đa thức đồng thời chia hết cho x + 1 và x - 3,P(x) = mx^3 + (m - 2)x^2 - (3n - 5)x - 4n,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

Theo bài ta có :

\(P\left(x\right)⋮\left(x-1\right)\) \(\Rightarrow P\left(1\right)=0\)

\(\Leftrightarrow m+m+1-4n-3+5n=0\)

\(\Leftrightarrow2m+n=2\) (1)

Lại có \(P\left(x\right)⋮\left(x+2\right)\Rightarrow P\left(-2\right)=0\)

\(\Leftrightarrow4m+4\left(m+1\right)-\left(4n+3\right).\left(-2\right)+5n=0\)

\(\Leftrightarrow8m+13n=-12\) (2)

Giải hệ (1) và (2) suy ra \(m=\frac{19}{9};n=\frac{-20}{9}\)

14 tháng 2 2016

moi hok lop 6 @gmail.com

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

3 tháng 4 2017

P(x) chia hết cho x + 1 ⇔ P(-1) = -m + (m - 2) + (3n - 5) - 4n = 0.

P(x) chia hết cho x - 3 ⇔ P(3) = 27m + 9(m - 2) - 3(3n - 5) - 4n = 0

Từ (1) và (2), ta có hệ phương trình ẩn m và n.


a) Ta có: \(\left|\left|2x+1\right|-2\right|=3\)

\(\Leftrightarrow\left|2x+1\right|-2=3\)

\(\Leftrightarrow\left|2x+1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)