cho tam giác ABC nội tiếp đường tròn (O) thỏa mãn góc BAC bằng 60 độ và AB<AC. Lấy D trên cung nhỏ BC sao cho góc BAC =2 góc DBC. gọi E là điểm chính giữa cung lớn BC.lấy H trên tia DA và I trren tia đối của tia AD sao cho AD=3DH=3AI. chứng minh rằng góc EIH=2 góc EHI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi R,S lần lượt là điểm đối xứng với C,B qua N,P. Lấy Q' là trung điểm của RS.
Ta có: \(AR=CA-CR=CA-2.\frac{CA+CP-AP}{2}=AP-CP\)
Tương tự \(AS=AP-BP\). Vì \(BP=CP< PA\) nên \(AR=AS\)
Suy ra AQ' là trung tuyến của \(\Delta\)RAS và cũng là đường phân giác \(\widehat{BAC}\)
Mặt khác tam giác BPC cân tại P có đường tròn nội tiếp tiếp xúc với BC tại M, suy ra M là trung điểm BC
Theo tính chất đường trung bình thì tứ giác MNQ'P là hình bình hành
Do vậy Q' trùng với Q. Mà AQ' là phân giác góc BAC nên AQ là phân giác góc BAC.
Sửa cả đề và trong bài giải luôn: Thay điểm P nằm trong tam giác thành P', tránh trùng với điểm P trên cạnh AB.
ta có OD vuông góc với BC nên D là điểm chính giữa cung BC nên AD là phân giác góc BAC
nên góc BAD=góc CAD=60/2=30 độ hay góc BAN=30 độ
góc BAM=góc BCA( góc tạo bởi tiếp tuyến và dây và góc nội tiếp cùng chắn cung BA)
suy ra góc NAM=30 + góc BAM=30 độ+ góc BCA
mà góc ANM là góc ngoài tam giác NAC nên góc ANM= góc NAM+góc NCA=30 độ + góc BCA= gócNAM suy ra tam giác ANM cân ởM