Cho hình bình hành ABCD. Vẽ tam giác đều ABE, ADF nằm ngoài hình bình hành.
a/ Tính số đo góc ACF.
b/ Gọi O là giao điểm 2 đường chéo của hình bình hành ABCD. M, N lần lượt là trung điểm AE và AF. Chứng minh tam giác MON đều.
Giúp mình vớ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ làm phần a thôi nhé bạn !
Bài giải:
Xét tam giác EBC và tam giác FAE, vì ABCD là hình bình hành và hai tam giác ABE, ADF đều nên ta có:
* EB = EA
* BC = AD = AF
* ^EBC = 60o + ^ABC = 60o + (180o - ^BAD) = 360o - ^BAD - (^FAD + ^BAE) = ^EAF
Do đó 2 tam giác trên bằng nhau. Từ đó suy ra EC = EF (2 cạnh tương ứng).
Hoàn toàn tương tự với tam giác EBC và CDF, ta cũng suy ra được CF = FE.
Vậy EC = EF = CF hay tam giác EFC đều. (đpcm)
a) Dễ thấy t/g BCE = t/g FDC ( c-g-c)
Suy ra CE = CF ( 1 )
Và t/g CDF = t/g FDC ( c-g-c )
Vì AF = DF
AE = DC
\(\widehat{FAE}=360-60-60-\widehat{DAB}=240-\widehat{DAB}\)
\(\widehat{FDC}=180-\widehat{DAB}+60=240-\widehat{DAB}\)
\(\Rightarrow\)\(\widehat{FAE}=\widehat{FDC}\)
t/g CDF = t/g FDC ( c-g-c )
EF = FC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra t/g EFC đều
b) Ta có ABCD là hình bình hành
M là trung điểm BD
Suy ra M cũng là trung điểm AC
Suy ra MI ; IK ; MK lần lượt là đường trung bình tam giác ADF ; AFD ; AED
Suy ra MI = 1/2 DF; IK = 1/2 EF ; MK = 1/2 DE
Mà EDF là tam giác đều suy ra DF = DE = EF
Suy ra t/g MIK là t/g đều
Suy ra IMK = 60 độ
Hạ K vuông góc DC tại N =>EM//KN﴾1﴿ Vì F dx K qua BC =>FC=CK =>2 góc FCB=FCK Mà A=C=60 độ =>góc KCN=60 Xét 2 tam giác vuông EMD và KNC có: ED=CK﴾cùng Bằng FC﴿ D= góc KCL => tam giác EMD=KNC ﴾cạnh huyền góc nhọn ﴿ =>EM=KN﴾2﴿ Từ ﴾1﴿ và ﴾2﴿ =>EKNM là HBH =>EK//DC =>EK//AB
hạ K vuông góc DC tại N => EM//KN(1)
vì F dx K qua BC = > FC = CK
=> 2 góc FCB = FCK
mà A=C + 60 độ => góc KCN = 60
xét 2 tam giác vuông EMD và KNC có :ED = CK ( cùng bằng FC ) D = góc KCL
=> tam giác EMD = KNC ( cạnh huyền góc nhọn )
=> EM = KN (2) từ (1) và (2)
=> EKNM là HBH => EK//DC=>EK//AB