Tìm X biết
a) \(x\cdot\frac{2}{7}\cdot\frac{3}{4}=\frac{5}{21}\)
b) \(x\cdot\frac{1}{2}=\frac{1}{3}\)
c) \(x:\frac{4}{5}=\frac{25}{8}:\frac{5}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^5.\left(1+1+1+1+1+1\right)}{2^5.\left(1+1\right)}\)
\(=\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=\frac{4^6}{3^6}.\frac{6^6}{2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Ta có: \(2^{12}=\left(2^3\right)^4=8^4\)
Vậy x= 4
a.4^7
b.8^5
c.cho x mk sẻ tính kết quả nhưng tìm xmk ko tính đâu
1. \(x=\frac{61}{42}\)
2. \(x=\frac{-36}{5}\)
3. \(x=\frac{13}{11}\)
4. \(x=\frac{1}{12}\)
5.\(x=\frac{-5}{2}\)
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
Bài 1 : Thực hiện phép tính :
a, \(\frac{4}{5}+1\frac{1}{6}\cdot\frac{3}{4}\)
= \(\frac{4}{5}+\frac{7}{6}\cdot\frac{3}{4}\)
= \(\frac{4}{5}+\frac{7}{8}\)
= \(\frac{32+35}{40}=\frac{67}{40}\)
b, \(\frac{2}{3}:\left(\frac{3}{4}\cdot\frac{4}{3}\right)+2\)
\(=\frac{2}{3}:1+2\)
\(=\frac{2}{3}+2=\frac{2+6}{3}=\frac{8}{3}\)
c, \(\frac{1}{2}\times\left(\frac{2}{3}+\frac{3}{5}\cdot\frac{5}{7}\right)+1\frac{1}{3}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{3}+\frac{9}{35}\right)+\frac{4}{3}\)
\(=\frac{1}{2}\cdot\frac{97}{105}+\frac{4}{3}\)
\(=\frac{97}{210}+\frac{4}{3}=\frac{377}{210}\)
Bài 2 : Tìm \(x\inℤ\), biết :
a, \(\frac{2}{3}< \frac{x}{6}\le\frac{10}{3}\)
\(\Leftrightarrow\frac{4}{6}< \frac{x}{6}\le\frac{20}{6}\)
mà \(x\inℤ\Rightarrow\text{x}\in\) {\(5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20\)}
b, \(\frac{1}{3}+x=1\frac{1}{2}\)
\(\frac{1}{3}+x=\frac{3}{2}\)
\(x=\frac{3}{2}+\frac{\left(-1\right)}{3}\)
\(x=\frac{7}{6}\) (loại vì \(x\notinℤ\))
\(\Rightarrow x\in\varnothing\)
c, \(\frac{1}{7}+x=\frac{25}{14}+\frac{5}{14}\)
\(\frac{1}{7}+x=\frac{15}{7}\)
\(x=\frac{15}{7}+\frac{(-1)}{7}\)
\(x=\frac{14}{7}=2\).
a,
x.2/7.3/4=5/21
x.3/14=5/21
x=5/21:3/14
x=10/9
b,
x.1/2=1/3
x=1/3:1/2
x=2/3
c,
x:4/5=25/8:5/4
x:4/5=5/2
x=5/2.4/5=2
A, x= 5/25 : 3/4 : 2/7 = 14/15
B, x=1/3 : 1/2 = 2/3
C, x=(25/8 : 5/4)x4/5 = 5/2 x 4/5 = 2