Chứng minh rằng nếu một số tự nhiên A có đúng 3 ước số phân biệt thì A là bình phương của một số nguyên tố.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DD
Đoàn Đức Hà
Giáo viên
10 tháng 7 2021
Giả sử số \(A\)phân tích thành thừa số nguyên tố được: \(A=p_1^{x_1}p_2^{x_2}...p_n^{x_n}\)
Khi đó tổng số ước của \(A\)là \(\left(x_1+1\right)\left(x_2+1\right)...\left(x_n+1\right)\).
Mà \(3=1.3\)do đó khi phân tích ra thừa số nguyên tố \(A\)chỉ có một ước nguyên tố duy nhất, số mũ của nó là \(3-1=2\).
Khi đó \(A=p^2\).
Do đó ta có đpcm.
TT
0
TT
0
S
0
S
0
TT
0
HP
0
GB
0