Tính:
1/2 - 1/4 - 1/8 - 1/16 - .... - 1/1024
(Nhập kết quả dưới dạng p/s tối giản)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
tách
\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\frac{1}{2}-\frac{1}{1024}\)
thay vào B ta có
\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)
\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)
\(\Rightarrow A=\frac{513}{1024}\)
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-.............-\frac{1}{1024}\)
=> 2S = \(2x\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{1024}\right)\)
2S = \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{512}\)
2S - S = \(\left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-........-\frac{1}{512}\right)\)- \(\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-........-\frac{1}{1024}\right)\)
=> S = \(1+\frac{1}{1024}=\frac{1024}{1024}+\frac{1}{1024}=\frac{1025}{1024}\)
Chắc chắn 100%
(x+1/2)+(x+1/4)+(x+1/8)+(x+1/6)=1
(x+x+x+x)+(1/2+1/4+1/6+1/8)=1
4x+(12/24+6/24+4/24+3/24)=1
4x+25/24=1
4x=1-25/24
4x=-1/24
x=-1/24:4
x=-1/96
1/2 + 1/3 + 1/4 +.......+1/48 + 1/49 + 1/50
1/2 = 1 - 1/2 =1/3
1/3 = 1 - 2/3
cho nên các phân số ở giữa đều bị mất vậy chỉ còn số đầu và số cuối
ta có 1 -1/50 = 49/50
Ta có : \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-.....-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)
Đặt \(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\)
=> \(2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{512}\)
=> \(2A-A=\frac{1}{2}-\frac{1}{1024}\)
Thay A vào ta có : \(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
Jenny123 tham khảo nhé
Đặt tổng trên là A, ta có:
\(A.2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(A.2-A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{512}-"\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\)
\(\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}"\)
\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}-\frac{1}{256}-\frac{1}{512}-\frac{1}{1024}\)
\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)
P/s: Bn xem lại đề nha