cho 2 số nguyên a và b, trong đó a < b và b > 0. Chứng minh \(\frac{a}{b}\)< \(\frac{a+1}{b+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{ab}{b\left(b+1\right)}+\frac{-a\left(b+1\right)}{b\left(b+1\right)}=\frac{-a}{b\left(b+1\right)}\)
\(\Rightarrow ab-a\left(b+1\right)=-a\)(khử mẫu)
\(\Leftrightarrow ab-ab-a=-a\)(đúng)
Vậy \(\frac{a}{b+1}+\frac{-a}{b}=\frac{-a}{b^2+b}\)
_Kik nha!! ^ ^
ta xét tích: a.(b+1) = ab+a
b.(a+1) = ab+b
- Do a<b \(\Rightarrow\)ab+a<ab+b\(\Rightarrow\)a.(b+1)<b.(a+1)
Suy ra: \(\frac{a}{b}\)<\(\frac{a+1}{b+1}\)
1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a )
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c)
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a)
= b ( a-b)(a-c) - c ( a-b)(c-a)
= ( b-c)(a-b)(a-c)
=> P = (b-c)(a-b)(a-c) / abc
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a)
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c)
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c)
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a)
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b)
Q = - 3bc(a-b) + 3bc(c-a)
Q = 3bc ( b+c-2a)
Q = -9abc
Suy ra => Q = 9abc / (a-b)(b-c)(c-a)
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi)
P*Q = 9 ( đpcm)
**************************************...
Chúc bạn học giỏi và may mắn
ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra
Chúc hok tốt
\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)
\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)
Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)
Ta có: a
/b+1 + (-a/b)
= a.b/b.(b+1) + (b+1).(-a)/b.(b+1)
= a.b/b.(b+1) + (-a.b - a)/b.(b+1)
= a.b+(-a.b-a)/b.(b+1)
= a.b-a.b-a/b2 + b
= -a/b2 + b ( đpcm)
Với a,b \(\in\)Z, b >0.
Ta có : a < b
\(\Rightarrow\)a + ab < b + ab
\(\Rightarrow\)a(b+1) < b(a+1)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+1}{b+1}\)
trả lời :
a/b < a+1/b+1
vì:
a cũ sẽ nhỏ hơn a mới 1 đơn vị
b cũ cũng sẽ nhỏ hơn b mới 1 đơn vị
mà a<b
nên có thể a + 1 sẽ = b cũ
ví dụ:
a=5
b=6
thì ta có:
5/6 và 5+1/6+1
=>5/6 và 6/7
nếu quy đồng 2 mẫu số thì ta có:
35/42 và 36/42
mà35/42 < 36/42
=> a/b < a+1/b+1