Cho tgiac ABC vuông tại A. Có AB= 6cm, AC=8cm. Vẽ đường cao AH.
a, Tính BC
b, Chứng minh AB2 = HB.BC
c, Tính BH, HC
giúp mình plssss :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:
AB2+AC2=BC2
62+82= BC2
36+64= BC2
BC2=100
BC= 10 (cm)
b. bạn thiếu đề rồi ạ.
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có
\(\widehat{CBA}\) chung
Do đó: ΔCAB\(\sim\)ΔAHB
c: Ta có: ΔCAB\(\sim\)ΔAHB
nên AC/HA=AB/HB=CB/AB
hay \(AB^2=BH\cdot BC\)
BH=3,6cm
=>CH=6,4cm
a ΔABC vuông ở A
⇒Góc A= 90 độ
Áp dụng định lý Pitago vào ΔABC:
BC²=AB²+AC²
BC²=6²+8²
BC²=100
⇒BC=10 cm
b AB/HB=BC/BA
=> AB2=HB×BC
⇒HB=AB²/BC
⇒HB=6²/10=3,6(cm)
Tương tự: AC²=HC×BC
⇒HC=AC²/BC
⇒HC=8²/10=6,4(cm)
Vậy BH=3,6 cm và HC=6,4 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy:BC=10cm
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔACB vuông tại A có AH là đường cao
nên AB^2=BH*BC
a, vì tam giác ABC vuông tại A , áp dụng định lí pytago ta có
\(AB^2+AC^2=BC^2=>BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\)
b,xét tam giác ABH và tam giác CBA ta có
góc B chung
góc AHB= góc BAC=90 độ
=>tam giác ABH đồng dạng tam giác CBA(góc.góc)
=>\(\dfrac{BC}{AB}=\dfrac{AB}{BH}< =>AB^2=BH.BC\)
c,ta có \(AB^2=BH.BC=>BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=\dfrac{18}{5}cm\)
\(=>HC=BC-HB=10-\dfrac{18}{5}=\dfrac{32}{5}\)
cam on heee