cho x,y,z >0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2014\)
tính Amin=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+y^2}=c;\sqrt{y^2+z^2}=a;\sqrt{z^2+x^2}=b\)
Ta có:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(z^2+x^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{c^2+b^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}+\frac{b^2+a^2-c^2}{c}\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{\left(2a+2b+2c\right)^2}{2\left(a+b+c\right)}-2018\right)=\frac{1009}{\sqrt{2}}\)
\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)
Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao
khi đó:
\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)
Dấu "=" xảy ra tại x=y=z=1
Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)
\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )
Xét 5x - y \(\le\)0 \(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)0 \(\Rightarrow\)BĐT đã được chứng minh
Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :
\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)
\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)
\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)
\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)
\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )
( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\))
Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\); \(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)
Cộng từng vế 3 BĐT lại với nhau, ta được :
\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)
\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)
Dấu "=' xảy ra khi x = y = z = 1
Vậy BĐT đã được chứng minh
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
\(T\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Đặt \(\left(\sqrt{y^2+z^2};\sqrt{x^2+z^2};\sqrt{x^2+y^2}\right)=\left(a;b;c\right)\Rightarrow a+b=c=2014\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\frac{b^2+c^2-a^2}{2}\\y^2=\frac{a^2+c^2-b^2}{2}\\z^2=\frac{a^2+b^2-c^2}{2}\end{matrix}\right.\)
\(\Rightarrow T.2\sqrt{2}\ge\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}+\frac{a^2+b^2-c^2}{c}\)
\(T.2\sqrt{2}\ge\frac{\left(b+c\right)^2}{2a}+\frac{\left(a+c\right)^2}{2b}+\frac{\left(a+b\right)^2}{2c}-\left(a+b+c\right)\)
\(T.2\sqrt{2}\ge\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\left(a+b+c\right)=a+b+c=2014\)
\(\Rightarrow T\ge\frac{1007}{\sqrt{2}}\)
Dấu "=" xảy ra khi \(x=y=z=...\)
Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath
bài này dễ mà
//vndoc.com/de-thi-hoc-sinh-gioi-lop-9-thcs-tinh-thanh-hoa-nam-hoc-2010-2011-mon-giao-duc-cong-dan-co-dap-an/download