Tìm giá trị x,y nguyên thỏa mãn đẳng thức :\(\left(y-2\right)x^2+1=y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(y+2\right)x^2+1=y^2\Leftrightarrow x^2y+2x^2+1-y^2=0\Leftrightarrow\)\(x^2y+2x^2+4-y^2-3=0\Leftrightarrow x^2\left(y+2\right)-\left(y^2-4\right)=3\)\(\Leftrightarrow x^2\left(y+2\right)-\left(y+2\right)\left(y-2\right)=3\)
\(\Leftrightarrow\left(y+2\right)\left(x^2-y+2\right)=3\)
Ta có bảng:
y + 2 | 1 | 3 | -1 | -3 |
x2 - y + 2 | 3 | 1 | -3 | -1 |
y | -1 | 1 | -3 | -5 |
x | 0 | 0 | Không tồn tại | Không tồn tại |
KL | Chọn | Chọn |
Vậy ta tìm được cặp (x ; y) = (0 ; 1) và (0; -1).
\(PT\Leftrightarrow x^2\left(y+2\right)+4-y^2=3\)
\(\Leftrightarrow\left(y+2\right)\left(x^2+2-x\right)=3\)
+, Trường hợp: \(\hept{\begin{cases}y+2=3\\x^2+2-x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
+, Trường hợp: \(\hept{\begin{cases}y+2=1\\x^2+2-x=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
2x2 + 2y2 + 3xy - x + y + 1 = 0
2x2 + 2y2 + 4xy - xy - x + y + 1 = 0
(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0
2(x + y)2 - x(y + 1) + (y + 1) = 0
2(x + y)2 + (y + 1)(1 - x) = 0
Do (x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0
\(\Rightarrow y+1=0;1-x=0\)
*) y + 1 = 0
y = -1
*) 1 - x = 0
x = 1
Với x = 1; y = -1, ta có:
B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018
= 1 + 22018
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
\(\left(y-2\right)x^2+1=y^2\Leftrightarrow\left(y-2\right)x^2=\left(y-1\right)\left(y+1\right)\)
- \(y=2\)không thỏa.
- \(y\ne2\): \(x^2=\frac{\left(y-1\right)\left(y+1\right)}{y-2}\)
Nếu \(y=1\Rightarrow x=0\).
Nếu \(y\ne1\)suy ra \(\left(y-1,y-2\right)=1\Rightarrow\left(y+1\right)⋮\left(y-2\right)\)
\(\Rightarrow3⋮\left(y-2\right)\Rightarrow y-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow y\in\left\{-1,3,5\right\}\)(do \(y\ne1\))
Ta chỉ có cặp \(\left(x,y\right)\in\left\{\left(0,-1\right)\right\}\)thỏa.