Cho a=b+c và c=b.d / b-d (b,d khác 0). CMR: a/b = c/d .Càng nhiều cách giải càng tốt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
suy ra: \(\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}\)
\(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b.\left(k+1\right)}{d.\left(k+1\right)}=\frac{b}{d}\)
=> ĐPCM
Cách 2:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
=>ĐPCM
Cách 3:
\(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow a.\left(c+d\right)=c.\left(a+b\right)\)
a.c+a.d=a.c+c.b
a.d=c.b
=>\(\frac{a}{b}=\frac{c}{d}\)(là giả thiết)
=>ĐPCM
Đặt \(\frac{a}{b}=\frac{c}{d}=t=>a=bt;c=dt\)
Thay vào VT ta có:
\(\frac{a}{c}=\frac{bt}{dt}=\frac{b}{d}\) (1)
Thay vào VP ta có :
\(\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b\left(t+1\right)}{d\left(t+1\right)}=\frac{b}{d}\) (2)
Từ (1) và (2) => VT = VP => ĐPCM
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{a+b}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc=ad-bd=bc-bd=d.\left(a-b\right)=b.\left(c-d\right)\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)Đúng 100% tick nha
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Đặt a/b=c/d=k
=>a=bk;c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
Cho a,b,c,d khác 0 và
b2=a.c;c2=b.d
b3+c3+d3khác 0
CMR:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Ta có: b2=a.c => \(\frac{a}{b}=\frac{b}{c}\)(1)
c2=b.d =>\(\frac{b}{c}=\frac{c}{d}\)(2)
Từ (1), (2) => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( tính chất dãy tỉ số bằng nhau)