K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)

Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.

Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)\(4k^2\)

=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,

Ta có bảng sau: 

\(2k-2n-1\)13-1-3
\(2k+2n+1\)31-3-1
\(2k-2n\)240-2
\(2k+2n\)20-4-2
\(n\)0-1-10

Vậy n thỏa mãn đề bài là n=0 hoặc n=-1

30 tháng 1 2022

hello

12 tháng 7 2016

Đặt  \(n^4+n^3+n^2=a^2\left(a\in N\right)\)

Ta có : \(n^4-2n^3+n^2< a^2< n^4+2n^3+n^2\) 

\(\Leftrightarrow\left(n^2-n\right)^2< a^2< \left(n^2+n\right)^2\)\(\Rightarrow n^2-n< a< n^2+n\)

Mặt khác, ta lại có : \(n^2-n< n^2< n^2+n\) \(\Rightarrow a=n^2\Leftrightarrow a^2=n^4\)

\(\Leftrightarrow n^4+n^3+n^2=n^4\Leftrightarrow n^2\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(\text{nhận}\right)\\n=-1\left(\text{loại}\right)\end{cases}}\)

Vậy n = 0 thoả mãn đề bài.