Cho tam giác ABC vuông tại A, biết BC= 30 cm. Trên BC lấy E dọa cho EC =20cm. Kẻ È vuông góc AC( F thuộc AC). Biết Sabef=45 cm2. Yính Sfec( giải gấp hộ mik vs)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét trong tam giác vuông ABC ta có:
Góc ACB=300
=> ABC=180-90-30=600
Vì góc ACB<ABC(30>60)
=> AB<AC(tính chất cạnh và góc đối diện)
b/Xét tam giác ABE và tam giác DBE có:
BE chung
BAE=BDE=900
ABE=DBE(Phân giác BE của góc ABC)
=> Tam giác ABE= tam giác DBE(ch-gn)
c/ Ta có BE là đường phân giác góc ABC
=> ABE=DBE=60/2=300
=> DBE=ECD=300
=> Tam giác ECB cân tại E
Vì EC là cạnh huyền của tam giác EDC vuông tại D
Mà tam giác ECB cân tại E nên BE cũng là cạnh huyền tam giác ABE
=> BE>AB
=> EC>AB(đpcm)
a, xét tam giác ABC theo định lý py _ta _go ta có :
\(^{BC^2=AC^2+AB^2}\)
\(BC^2=5^2+7^2\)
\(^{BC^2=25+49}\)
\(^{BC^2=74}\)
BC=\(\sqrt{74}\)
b,xét tam giác vuông ABE và tam giác vuông DBE ta có:
BA=DB(gt)
BE chung
=}tam giác ABE=tam giác DBE(ch_cgv)
=}EA=ED (2 cạnh tương ứng)
c,xét tam giác vuông AEF và tam giác vuông DEC ta có:
AE=ED(cm câu b)
E1=E2 (đối đỉnh)
=}tam giác AEF và tam giác DEC (gn_cgv)
=}EF=EC (2 cạnh tương ứng)
d,Ta có :BA =DA (gt)
AE=ED(cm câu a)
=}BE là đường trung trực của AD
MÌNH TỰ LÀM KHÔNG BIẾT CÓ ĐÚNG HAY KHÔNG BẠN Ạ
a) Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py - ta - go )
thay số: \(5^2+7^2=BC^2\)
\(BC^2=74\)
\(\Rightarrow BC=\sqrt{74}\)cm
b) Xét tam giác ABE vuông tại A và tam giác DBE vuông tại D
có: AB = DB ( gt)
AE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
c) ta có: tam giác ABE = tam giác DBE ( phần b)
=> AE = DE ( 2 cạnh tương ứng)
Xét tam giác AEF vuông tại A và tam giác DEC vuông tại D
có: AE = DE ( cmt)
góc AEF = góc DEC ( đối đỉnh )
\(\Rightarrow\Delta AEF=\Delta DEC\left(cgv-gn\right)\)
=> EF = EC ( 2 cạnh tương ứng)
d) ta có: tam giác ABE = tam giác DBE ( phần b)
=> góc ABE = góc DBE ( 2 góc tương ứng )
Xét tam giác ABH và tam giác DBH
có: AB = DB ( gt)
góc ABE = góc DBE ( cmt)
BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\left(c-g-c\right)\)
=> AH = DH ( 2 cạnh tương ứng ) (1)
góc AHB = góc DHB ( 2 góc tương ứng )
mà góc AHB + góc DHB = 180 độ ( kề bù)
=> góc AHB + góc AHB = 180 độ
2. góc AHB = 180 độ
góc AHB = 180 độ :2
góc AHB = 90 độ
=> \(\Rightarrow BE\perp AD⋮H\) ( định lí vuông góc) (2)
Từ (1) ; (2) => BE là đường trung trực của AD ( định lí đường trung trực)
EF ( ghi lộn):v