Cho biếu thức \(A=\frac{a^3}{24}+\frac{a^2}{8}+\frac{a}{12}\)với \(a\)là số tự nhiên chẵn.Hãy chứng tỏ A nguyên.(Giúp mình bài này với nhé,bài này mình thiếu 1 dữ kiện nữa là ra rồi)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia 12 dư 2 nên a = 12k + 2
b chia 9 dư 1 nên b = 9t + 1
Ta có: a + b = 12k + 2 + 9t + 1 = 12k + 9t + 3 chia hết cho 3
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??
\(\frac{a^3+3a^2+2a}{24}=\frac{a\left(a+1\right)\left(a+2\right)}{24}\)
de thay h 3 so tu nhien lien tiep chia het cho 6
do a la so tu nhien chan nen hien nhien a phai chia het cho 4
\(\Rightarrow\)chia het cho 24\(\Rightarrow\) A la so nguyen