Cho a,b,c là các 1 số âm, 1 số 0 và 1 số dương.Hãy tìm số dương, số âm và số bằng 0 trong các số trên biết /a/=b^2.(b+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có 1 = -1.(-1-0)
=> a là số nguyên dương vì = 1
=> b là số nguyên âm vì = -1
=> c là số không vì = 0
+, Nếu a=0 => b=0 hoặc b-c=0 => b=c hoặc b=c ( đều vô lí ) => a khác 0
+, Nếu b = 0 => a = 0 ( vô lí ) => b khác 0
=> c = 0
=> |a| = b^2.b = b^3
=> b^3 >= 0
=> b là số nguyên dương
=> a là số nguyên âm
Vậy a là số nguyên âm , b là số nguyên dương và c = 0
Tk mk nha
1/ x = -4 ; y = 5 ; z = 15
2/ vì ab = 1 = -1 . ( -1 ) = 1 . 1 và bằng nhau nên a = b
3/
Vì ba số có a;b;c có 1 số âm,1 số dương,1số 0 nên ba số này phân biệt .
+)a khác 0 vì nếu a = 0 thì vp = 0 = > hoặc b = 0 hoặc b = c
mà b = 0 thì b = a ( vô lý) b = c cũng vô lí
+) b khác 0 vì nếu b = 0 thì vp = 0 nên vt = 0 hay a = 0
Vô lí vì khi đó a = b = 0
Vậy c = 0
ĐK trở thành \a\=b^2.b = b^3
Vì vt > = 0 ( là biểu thức nằm trong dấu trị tuyệt đối)
Nên vp = b^3 > = 0 => b > = 0
Mà b khác 0 ( vì c = 0 và b khác c) nên b > 0
=> a < 0
Vậy a < 0; b > 0; c = 0.
Cách 2 : Nếu
1/ |a|=b^2(b-c)= 0 <=> a=0; => (b-c)= 0 <=> b = c; loại (không phù hợp với đề bài)
2/ |a|=b^2(b-c)> 0 => a & b khác 0 => c= 0; => b^2(b)>0, mà b^2>0 nên => b>0; => a<0.