Phân tích đa thức thành nhân tử giúp mình \(x-2\sqrt{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\cdot\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)+1\)
\(=\left(x+1\right)\left(x+2\right)\left[x\left(x+3\right)\right]+1\)
\(=\left(x^2+x+2x+2\right)\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+2\right)\left(x^2+3x\right)+1\)
gọi \(\left(x^2+3x\right)=a\)
\(\Rightarrow\left(t+2\right)t+1\)
\(=t^2+2t+1=\left(t+1\right)^2\)
\(\Rightarrow=\left(x^2+3x+1\right)^2\)
\(\Rightarrow x\cdot\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)+1\)\(=\left(x^2+3x+1\right)^2\)
1/(x+2)2 -(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x
2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)
2/ Bài này làm gì còn phân tích được nữa.
\(\left(4x^2-4x+1\right)-\left(x-1\right)^2\)
\(=\left(2x-1\right)^2-\left(x-1\right)^2\)
\(=\left(2x-1-x+1\right)\left(2x-1+x-1\right)\)
\(=x\left(3x-2\right)\)
\(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2\left(x^2-2x+1\right)-5x+5-1\right)=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)
\(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)
\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)
\(=\left(x-1\right)\left[2\left(x^2-2x+1\right)-5\left(x-1\right)-1\right]\)
\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)
\(=\left(x-1\right)\left(2x^2-9x+6\right)\)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
\(=x^3+2x^2-8x=x\left(x^2+2x-8\right)\\ =x\left(x^2-2x+4x-8\right)\\ =x\left(x-2\right)\left(x+4\right)\)
\(=\left(x-1\right)-2\sqrt{x-1}+1=\left(\sqrt{x-1}-1\right)^2\)