Mn giup mk nha.Cam on mn
Cho a,b,c >0 .Cm :a)\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)vs a>c,b>c
b) Nếu \(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)thì \(b+c\ge2a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. BĐT tương đương với \(6\left(a^2+b^2\right)-2ab+8-4\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\ge0\)
\(\Leftrightarrow\left[a^2-4a\sqrt{b^2+1}+4\left(b^2+1\right)\right]+\left[b^2-4b\sqrt{a^2+1}+4\left(a^2+1\right)\right]\)\(+\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-2\sqrt{b^2+1}\right)^2+\left(b-2\sqrt{a^2+1}\right)^2+\left(a-b\right)^2\ge0\)(đúng)
=> Đẳng thức không xảy ra
2. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
\(\Leftrightarrow a^4+b^4+c^2+1\ge2a^2b^2-2a^2+2ac+2a\)
\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^2-2ac+a^2\right)+\left(a^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c-a\right)^2+\left(a-1\right)^2\ge0\)
Bài 1:
Đặt \(\begin{array}{l} \sqrt c = \alpha \\ \sqrt {b - c} = \beta \\ \end{array}\) và \(\begin{array}{l} \sqrt {a - c} = x \\ \sqrt c = y \\ \end{array}\)
Áp dụng bất đẳng thức Bunhiacopxki
\(x\alpha + y\beta \le \left| {x\alpha + y\beta } \right| \le \sqrt {{x^2} + {y^2}} .\sqrt {{\alpha ^2} + {\beta ^2}}\)
\(\begin{array}{l} \Leftrightarrow \sqrt c .\sqrt {a - c} + \sqrt {b - c} .\sqrt c \le \sqrt {{{\left( {\sqrt c } \right)}^2} + {{\left( {\sqrt {b - c} } \right)}^2}} .\sqrt {{{\left( {\sqrt c } \right)}^2} + {{\left( {\sqrt {a - c} } \right)}^2}} \\ \Leftrightarrow \sqrt {c(a - c)} + \sqrt {c(b - c)} \le \sqrt {c + (a - c)} .\sqrt {c + (b - c)} \\ \Leftrightarrow \sqrt {c(a - c)} + \sqrt {c(b - c)} \le \sqrt b \sqrt a = \sqrt {ab} . \\ \end{array}\)
P/s: Mình gõ latex kém quá khó hiểu chỗ não thì cứ hỏi :)))
Bài 2:
\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
\(\Leftrightarrow\sqrt{a}\sqrt{ab-a}+\sqrt{b}\sqrt{ab-b}\)\(\le\sqrt{\left(a+b\right)\left(2ab-a-b\right)}\)
\(\le\frac{a+b-a-b+2ab}{2}=ab\)
Lời giải:
\(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
\(\Rightarrow (\sqrt{a}+\sqrt{b}+\sqrt{c})^2=4\)
\(\Leftrightarrow a+b+c+2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=4\)
\(\Leftrightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\frac{4-(a+b+c)}{2}=1\)
\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})\)
Tương tự:
$b+1=(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})$
$c+1=(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})$
Khi đó:
\(A=\left[\frac{\sqrt{a}}{(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})}+\frac{\sqrt{b}}{(\sqrt{b}+\sqrt{a})(\sqrt{b}+\sqrt{c})}+\frac{\sqrt{c}}{(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})}\right]\sqrt{(a+1)(b+1)(c+1)}\)
\(\frac{\sqrt{a}(\sqrt{b}+\sqrt{c})+\sqrt{b}(\sqrt{c}+\sqrt{a})+\sqrt{c}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.\sqrt{(\sqrt{a}+\sqrt{b})^2(\sqrt{b}+\sqrt{c})^2(\sqrt{c}+\sqrt{a})^2}\)
\(=\frac{2(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})\)
\(=2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=2\)
Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)
\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế
\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
Ta có: bc(a2+1) = (a+b)(a+c)
\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) =\(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\)
Áp dụng BĐT Cô-si: \(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+c}+\dfrac{a}{a+c}\right)\)
\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
CMTT: \(\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{a+c}\right)\)
\(\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{c+b}\right)\)
\(\Rightarrow\) S \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+a}+\dfrac{a}{c+a}+\dfrac{b}{a+b}+\dfrac{b}{c+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
\(\Rightarrow\) S\(\le\) \(\dfrac{1}{2}.3=\dfrac{3}{2}\)
Vậy Smax = \(\dfrac{3}{2}\)
Dấu "=" xảy ra\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b=c\\a+b+c=abc\end{matrix}\right.\)
\(\Leftrightarrow\) \(a=b=c=\sqrt{3}\)
Lời giải:
Biểu thức có GTLN chứ không có GTNN bạn nhé. Nếu tìm GTLN thì làm như sau:
\(a+b+c=abc\)
\(\Rightarrow a(a+b+c)=a^2bc\)
\(\Rightarrow a(a+b+c)+bc=a^2bc+bc\)
\(\Rightarrow (a+b)(a+c)=bc(a^2+1)\)
\(\Rightarrow \frac{a}{\sqrt{bc(1+a^2)}}=\frac{a}{\sqrt{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\) (theo BĐT AM-GM)
Hoàn toàn tương tự với các phân thức còn lại:
\(\frac{b}{\sqrt{ca(1+b^2)}}\leq \frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right);\frac{c}{\sqrt{ab(1+c^2)}}\leq \frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)
Cộng theo vế các BĐT trên và rút gọn:
\(\Rightarrow \frac{a}{\sqrt{bc(1+a^2)}}+\frac{b}{\sqrt{ca(1+b^2)}}+\frac{c}{\sqrt{ab(1+c^2)}}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy GTLN là $\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$
Ta có:
\(\frac{2}{\sqrt{a}}+\frac{2}{\sqrt{b}}+\frac{2}{\sqrt{c}}=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)+\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\left(\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}\right)\)
\(\ge\frac{\left(1+1\right)^2}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+1\right)^2}{\sqrt{b}+\sqrt{c}}+\frac{\left(1+1\right)^2}{\sqrt{c}+\sqrt{a}}\)
\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{4}{\sqrt{b}+\sqrt{c}}+\frac{4}{\sqrt{c}+\sqrt{a}}\)
=> \(2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)\(\ge4\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
=> \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)\(\ge2\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
"=" xảy ra <=> a =b =c.
1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)
Đẳng thức xảy ra khi $a=b=c.$
2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)
Đẳng thức..
3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$
Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.
4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$
Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)
Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$
Đây là điều hiển nhiên.
5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)
6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)
Có thế thôi mà nhỉ:v
a) \(BĐT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)
\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)
Áp dụng AM-GM:\(VT\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}+\frac{c}{a}+1-\frac{c}{b}\right)=1\left(đpcm\right)\)
Dấu = xảy ra khi (a+b).c=ab
b) \(2+b+c+2+b+c\ge2\sqrt{\left(b+1\right)\left(c+1\right)}+2+b+c=\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge4\left(1+a\right)\)
\(\Leftrightarrow b+c\ge2a\)
cau a) dung cosi
\(\sqrt{c\left(a-c\right)}\le\frac{a-c+c}{2}\) ap dung cosi cho hai so c va a-c
tuong tu voi cac so khac
\(BT\le\frac{a-c+c}{2}+\frac{b-c+c}{2}-\frac{a+b}{2}\)(bt la VT cua de)
=> DPCM
b)
dung cosi nhu cau a
lam nhanh luon
\(\sqrt{1+b}\ge\frac{b+1+1}{2}\)
tuong tu
\(BT\ge\frac{b+2}{2}+\frac{c+2}{2}\ge a+2\)
<=> b+c>=2a