tìm giá trị nhỏ nhất của |x-2016|+|x-2015|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do |x+2015| lớn hoặc = 0 với mọi x nên A bé hơn hoặc bằng -2016
Dấu "=" xảy ra khi và chỉ khi x+2015=0
=> x=-2015
với giá trị nào của x thì biểu thức A= /x-2016/ + 2015 có giá trị nhỏ nhất ? tìm giá trị nhỏ nhất đó
Vì /x-2106/ >= 0
=> /x-2016/+2015 >= 2015
=> Min = 2015 <=> x = 2016
Đặt A = |x-2015|+|2016-x| +|x-2017|
=> A = |x-2015|+|x-2016| +|2017-x|
Ta có |x-2015| \(\ge\)x - 2015 (với mọi x)
|x-2016| \(\ge\)0 (với mọi x)
|2017-x| \(\ge\) 2017 - x (với mọi x)
=> |x-2015|+|x-2016| +|2017-x| \(\ge\)(x - 2015) + 0 + (2017 - x) (với mọi x)
=> A \(\ge\)2 (với mọi x)
=> A đạt GTNN là 2 khi
\(\hept{\begin{cases}\text{|x-2015|\ge0}\\\text{|x-2016|=0}\\\text{|2017-x|\ge0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\x-2016=0\\2017-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\Rightarrow x=2016}\)
Vậy GTNN của A là 2 tại x = 2016
Ta có:
\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|\)
\(\ge x-2015+0+2017-x=2\)
Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)
Vậy MinA=2 khi x=2016
a, Ta có : (x-5)2 \(\ge\)0 với mọi x
=> (x-5)2 + 2016 \(\ge\) 2016
Dấu " = " xảy ra <=> (x-5)2=0
=> x-5=0
=> x=5
b, Ta có -(x+3)2 \(\le\)0
=> -(x+3)2 +2015 \(\le\)2015
Dấu " = " xảy ra <=> -(x+3)2 = 0
=> x+3 = 0
=> x = -3
nhớ k đúng cho mk nha!! :))
vì /2014-x/ lớn hơn hoặc bằng 0 tương tự với các số còn lại
để A có giá trị nhỏ nhất thì các số này nhỏ nhất mà nhỏ nhất thì x lớn nhất
vậy x=2014
=> A= 0+1+2=3
| 2014 - x | + | 2015 - x | + | 2016 - x |> | 2014 - x + 2015 - x + 2016 - x |
| 2014 - x + 2015 - x + 2016 - x | = | 2014 + 2015 + 2016 - x - x - x |
= | 6045 - 3x |
đề A có giá trị nhỏ nhất thì | 6045 - 3x | phải có giá trị nhỏ nhất
suy ra 6045 = 3x
6045 : 3 =x
2015 = x
thay x vào A
A = | 2014 - 2015 | + | 2015 - 2015 | + | 2016 - 2015 |
A = 1 + 0 + 1
A = 2
vậy min A = 2
khi x = 2015
GTNN = 1 tại x = 2016 hoặc x = 2015
l x - 2016 l + l x - 2015l = l 2016 - x l + l x - 2015l \(\ge\) l 2016 - x + x - 2015l = 1
Vậy GTNN là 1 khi 2015< x < 2016 ( nhở hơn = )