Tính
\(\frac{1}{1.2.3}-\frac{1}{2.3.4}-........-\frac{1}{97.98.99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B, ta có:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
Thấy:
\(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0\)
\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
\(A=\frac{1}{1.2.3}-\frac{1}{2.3.4}-........-\frac{1}{97.98.99}\)
\(2A=\frac{2}{1.2.3}-\frac{2}{2.3.4}-........-\frac{2}{97.98.99}\)
\(2A=-\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{97.98.99}\right)\)
\(2A=-\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+......+\frac{1}{97.98}-\frac{1}{98.99}\right)\)
\(2A=-\left(\frac{1}{1.2}-\frac{1}{98.99}\right)\)
\(2A=-\frac{2425}{4851}\)
\(A=-\frac{2425}{4851}:2\)
\(A=-\frac{2425}{9702}\)
T/c:A=1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6+...+1/97*98*99+1/98*99*100
2A=2/1*2*3+2/2*3*4+2/3*4*5+2/4*5*6+...+2/97*98*99+1/98*99*100
2A=(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+.....+(1/97*98-1/98*99)+(1/98*99-1/99*100)
2A=1/2+1/99*100
A=tự tính nha
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
Giải: Đặt A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.
Ta xét:
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100
Tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó:
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100
= 1/1.2 - 1/99.100
= 1/2 - 1/9900
= 4950/9900 - 1/9900
= 4949/9900.
Vậy A = 4949/9900
Đặt S = 1/1.2.3 - 1/2.3.4 - 1/3.4.5 - ...- 1/97.98.99
S x 2 = 2/1.2.3 - 2/2.3.4 - 2/3.4.5 - ...- 2/97.98.99
= (1/1.2 -1/2.3) - (1/2.3 - 1/3.4 ) - (1/3.4 - 1/4.5) - ...- (1/97.98 - 1/98.99)
= 1/1.2 - 1/2.3 - 1/2.3 + 1/3.4 - 1/3.4 + 1/4.5 - ....- 1/97.98 + 1/98.99
= 1/2 -1/3 + 1/98.99
= 1618/9072 => S = 1618/9072 : 2 = 809/9072
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)
\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)
Đến đây tự tính được rồi:v
Đặt tổng trên là A
Ta có:
\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)
\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)
\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)
\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)
*Làm tiếp*
\(#Louis\)
Mình không chép đề bài nhé :
Gọi biểu thức là A :
Ta có : 2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
=\(\frac{1}{1.2}-\frac{1}{49.50}\)( Rút gọn đi ta được cái này )
=1/2 - 1/2450
Vậy A = (1/2 - 1/2450):2
98 / 99